首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法与数据结构之十----内核中的链表操作学习

    /**************************************************************** 文件内容:内核之链队操作 版本V1.0 作者:HFL 时间:2013-12-22 说明:用户态中链表每个节点包含数据域和指针域,而内核态是每个数据中包含链表 因此内核态链表一般是嵌套在某个包含数据成员的结构体来实现。 内核的链表应用非常广泛:进程管理,定时器,工作队列,运行队列。总之 内核对于多个数据的组织和多个熟悉的描述都是通过链表串起来的。  *****************************************************************/  #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> MODULE_DESCRIPTION("My Module"); MODULE_ALIAS("My module"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("HFL21014"); struct student {     char name[100];     int counter;     struct list_head list; }; struct student *Mystudent; struct student *Temp_student; struct list_head student_list; struct list_head *pos; int Kernel_list_init() { int j = 0; INIT_LIST_HEAD(&student_list); Mystudent = kmalloc(sizeof(struct student)*5,GFP_KERNEL); memset(Mystudent,0,sizeof(struct student)*5); for(j=0;j<5;j++) {        sprintf(Mystudent[i].name,"Student%d",j+1);       Mystudent[j].counter = j+1;      list_add( &(Mystudent[j].list), &student_list); }  list_for_each(pos,&student_list) //遍历整个内核链表,pos其实就是一个for循环标量。中间临时使用,既不输入也不输出 { Temp_student = list_entry(pos,struct student,list);  printk("hello,my student %d  name: %s\n",Temp_student->counter,Temp_student->name); } return 0; } void Kernel_list_exit() { int k ; /* 模块卸载是要删除链表,并释放内存 */ for(k=0;k<10;jk++) { list_del(&(Mystudent[k].list));      } kfree(Mystudent); } module_init(Kernel_list_init);

    03

    linux之用户空间和内核空间

    linux驱动程序一般工作在内核空间,但也可以工作在用户空间。下面我们将详细解析,什么是内核空间,什么是用户空间,以及如何判断他们。 Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地址空间也为0~4G。Linux内核将这4G字节的空间分为两部分。将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为“内核空间”。而将较低的3G字节(从虚拟地址 0x00000000到0xBFFFFFFF),供各个进程使用,称为“用户空间)。因为每个进程可以通过系统调用进入内核,因此,Linux内核由系统内的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间。 Linux使用两级保护机制:0级供内核使用,3级供用户程序使用。从图中可以看出(这里无法表示图),每个进程有各自的私有用户空间(0~3G),这个空间对系统中的其他进程是不可见的。最高的1GB字节虚拟内核空间则为所有进程以及内核所共享。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中。 虽然内核空间占据了每个虚拟空间中的最高1GB字节,但映射到物理内存却总是从最低地址(0x00000000)开始。对内核空间来说,其地址映射是很简单的线性映射,0xC0000000就是物理地址与线性地址之间的位移量,在Linux代码中就叫做PAGE_OFFSET。 内核空间和用户空间之间如何进行通讯? 内核空间和用户空间一般通过系统调用进行通信。 如何判断一个驱动是用户模式驱动还是内核模式驱动? 判断的标准是什么? 用户空间模式的驱动一般通过系统调用来完成对硬件的访问,如通过系统调用将驱动的io空间映射到用户空间等。因此,主要的判断依据就是系统调用。 内核空间和用户空间上不同太多了,说不完,比如用户态的链表和内核链表不一样;用户态用printf,内核态用printk;用户态每个应用程序空间是虚拟的,相对独立的,内核态中却不是独立的,所以编程要非常小心。等等。 还有用户态和内核态程序通讯的方法很多,不单单是系统调用,实际上系统调用是个不好的选择,因为需要系统调用号,这个需要统一分配。 可以通过ioctl、sysfs、proc等来完成。

    02

    拒绝造轮子!如何移植并使用Linux内核的通用链表(附完整代码实现)

    链表是一种常用的组织有序数据的数据结构,它通过指针将一系列数据节点连接成一条数据链,是线性表的一种重要实现方式。相对于数组,链表具有更好的动态性,建立链表时无需预先知道数据总量,可以随机分配空间,可以高效地在链表中的任意位置实时插入或删除数据。   通常链表数据结构至少应包含两个域:数据域和指针域,数据域用于存储数据,指针域用于建立与下一个节点的联系。按照指针域的组织以及各个节点之间的联系形式,链表又可以分为单链表、双链表、循环链表等多种类型,下面分别给出这几类常见链表类型的示意图:

    02

    Linux X86-ACPI PNP Hardware ID的识别框架

    基于X86架构的Linux内核,在移植驱动的过程中,发现GPIO和I2C的device ID添加到pnp驱动框架后无法进入probe函数,后面找了下原因,因为pnp遵循的是ACPI规范,是由于如下Hardware ID字段是需要从BIOS中进行描述的,而目前的驱动匹配不到对应的字段,自然就不可能注册成功了。 PNP是什么东西?不是三极管的那个PNP啦,这个PNP表示的是:Plug-and-Play,译文为即插即用。 PNP的作用是自动配置底层计算机中的板卡和其他设备,然后告诉对应设备都做了什么。PnP的任务是把物理设备和软件设备驱动程序相配合,并操作设备,在每个设备和它的驱动程序之间建立通信信道。然后,PnP分配下列资源给设备和硬件:I/O地址、IRQ、DMA通道和内存段。即插即用设备配置的控制权将从系统BIOS传递到系统软件,所以驱动中一定会有代码进行描述,到时可以跟一下这部分的代码深入了解一下。由于PNP遵循ACPI的规范,那么既然是规范,那肯定要照着做了,规范怎么说,那就怎么做。 以下是关于ACPI Spec中对Hardware ID的描述,描述如下:

    04

    双链表操作(一)

    1、在引入双链表之前,我们先来回忆之前为什么要引入单链表介绍:它是解决的数组的数组的大小比较死板不容易扩展的问题;使用堆内存来存储数据,将数据分散到各个节点之间,其各个节点在内存中可以不相连,节点之间通过指针进行单向链接。链表中的各个节点内存不相连,有利于利用碎片化的内存。但是单链表各个节点之间只由一个指针单向链接,这样实现有一些局限性。局限性主要体现在单链表只能经由指针单向移动(一旦指针移动过某个节点就无法再回来,如果要再次操作这个节点除非从头指针开始再次遍历一次),因此单链表的某些操作就比较麻烦(算法比较有局限)。这里可以看我之前写的单链表操作文章结合一下,就能非常好理解单链表的局限性了。

    03

    字符设备驱动程序接口

    __init__宏:被修饰的函数会被链接器链接放入.init.text段中(本来默认情况下函数是被放入.text段中)。对内核而言是一种暗示,表示该函数仅在初始化期间使用,内核启动时统一会加载.init.text段中的这些模块安装函数,加载完后就会把这个段给释放掉以节省内存。 __exit__宏:被修饰的函数仅用于模块卸载,链接器会将其放入特殊的ELF段。如果模块被直接内嵌到内核中,或内核的配置不允许卸载模块,则被修饰的函数将被简单的丢弃。 prink函数:模块在被加载到内核后,它能调用的函数仅仅是由内核导出的那些函数。KERN_INFO是printk的打印级别,其实只是一个字符串(如<1>)。操作系统的命令行中也会有一个打印级别的设置(值为0-7),当前操作系统中执行printk的时候会去对比printk中的打印级别和操作系统命令行中设置的打印级别,小于命令行设置级别的信息会被打印出来,大于的会被拦截。 module_init宏:该宏声明的函数会在模块被装载到内核中调用。 module_exit宏:该宏声明的函数会在模块被卸载时调用。 MODULE_LICENSE宏:指定该代码所使用的许可证协议。 MODULE_AUTHOR:描述模块作者。

    03

    RCU 机制_NRPS作用机制

    Read-copy update (RCU) 是一种 2002 年 10 月被引入到内核当中的同步机制。通过允许在更新的同时读数据,RCU 提高了同步机制的可伸缩性(scalability)。相对于传统的在并发线程间不区分是读者还是写者的简单互斥性锁机制,或者是哪些允许并发读但同时不 允许写的读写锁,RCU 支持同时一个更新线程和多个读线程的并发。RCU 通过保存对象的多个副本来保障读操作的连续性,并保证在预定的读方临界区没有完成之前不会释放这个对象。RCU定义并使用高效、可伸缩的机制来发布并读取 对象的新版本,并延长旧版本们的寿命。这些机制将工作分发到了读和更新路径上,以保证读路径可以极快地运行。在某些场合(非抢占内核),RCU 的读方没有任何性能负担。

    02
    领券