今天和大家分享如果使用Pandas实现单、多条件筛选、模糊筛选。 还是老套路,我们需要先读取一组数据作为测试文件。 测试文件使用读书笔记7的材料,传送门如下: 文件读取功能(Pandas读书笔记7)
stringr包是Hadley Wickham大神贡献的R包之一,主要用于字符串的处理。对于经常需要对数据进行预处理的分析人员来说,简直是一把“利器”,可谓是上能屠龙,下能剔牙。其用法相比于R自带的函数,更加简单明了。stringr包在我工作中,是属于频繁使用的R包之一。简单的用法也是深入我心,强烈推荐使用该包进行字符串的预处理。 接下来,根据我在工作中使用到的stringr包的场景,介绍一下这些函数的用法。 字符拼接 场景:在读入csv或者xlsx格式文件时,根路径一般不一致,然后我一般使用全名路径。
5.3 增加新一列 e.p df1$p.value <- c(0.01,0.02,0.07,0.05)
这里我将某一列设置为str,主要是将时间列转为str类型,然后提取某一天的所有数据。
文本文件是生物信息学中应用非常广泛的文本格式,甚至可以说是最重要的文件格式,比如常见的测序下机数据Fastq、参考基因组保存格式Fasta、比对文件SAM,以及突变列表VCF,它们都是文本文件。熟练地进行文本文件的处理,对于生信数据分析来说非常重要。比如为特定程序准备相应的输入文件,或者从结果文件中提取需要的信息。
前言 这两天自己挽起袖子处理日志,终于把AWK给入门了。其实AWK的基本使用,学起来也就半天的时间,之前总是靠同事代劳,惰性呀。 此文仅为菜鸟入门,运维们请勿围观。 下面是被处理的日志的示例,不那么标准,但不标准的日志正是标准的情况。 [2015-08-20 10:00:55.600] - [192.168.0.73/192.168.0.75:1080 com.vip.xxx.MyService_2.0 0 106046 100346 90ms 110ms] 基本语句 最基本的语句,以空格做分割,提取所
linux文本处理命令是一类对文件进行操作的命令,通过使用文本处理命令,可以轻松的对文件进行排序,拆分,合并等操作,熟练掌握文本处理命令,在生物信息文本处理中,有十分重要的意义。
awk 是处理文本文件的一个应用程序,几乎所有的Linux以及MacOS都自带这个程序。
cut 译为“剪切, 切割” ,它是一个强大文本处理工具,它可以将文本按列进行划分处理。cut 命令逐行读入文本,然后按列划分字段并进行提取、输出等操作。
cut应用场景:通常对数据进行列的提取 (在工作中,我们通常会对数据库或者查出来的日志进行列的提取)
这里可以单独查看其中的内容 data['nick'],计算其中的大小则使用 data['nick'].value_counts()。
==值得注意的是,drop函数不会修改原数据,如果想直接对原数据进行修改的话,可以选择添加参数inplace = True或用原变量名重新赋值替换。==
前言 找到SQL注入漏洞后,我们可以用它来干什么呢?那么本篇文章给大家带来的就是SQL注入漏洞利用技术,现在是时候让我们去体验一下漏洞利用的乐趣了。 正文 第三节 利用SQL注入 3.1、识别数据库
在Python当中模块Pandas在数据分析中以及可视化当中是被使用的最多的,也是最常见的模块,模块当中提供了很多的函数和方法来应对数据清理、数据分析和数据统计,今天小编就通过20个常用的函数方法来为大家展示一下其中的能力,希望大家能有所收获。
今天要跟大家分享三个excel中使用频率最高的字符串提取函数——left/right/mid函数。 ▽▼▽ 这三个函数分别对用截取某一单元格文本的左、右、中间某一长度的字符。 ●●●●● 1、LEFT
如果这条sql是写操作(insert、update、delete),那么大致的过程如下,其中引擎层是属于 InnoDB 存储引擎的,因为InnoDB 是默认的存储引擎,也是主流的,所以这里只说明 InnoDB 的引擎层过程。由于写操作较查询操作更为复杂,所以先看一下写操作的执行图。方便后面解析。
python的列表对象是python中最通用的序列。列表是一个任意类型的对象的位置相关的有序集合,它没有固定的大小。通过对偏移量进行赋值以及其他各种列表的方法进行调用,确实可以修改列表的大小。
本期和大家分享DataFrame数据的处理~ 一、提取想要的列 第一种方法就是使用方法,略绕,使用.列名的方法可以提取对应的列! 第二张方法类似列表中提取元素!本方法是我们将来比较常用的方法。 需要说
本文实例讲述了PHP实现提取多维数组指定一列的方法。分享给大家供大家参考,具体如下:
设置列名dataframe.columns=['col1','col2','col3']
数据类结构 数据类型 一维 vector 向量 数值、字符、逻辑都可;只有长度;只允许一种数据 二维 matrix 矩阵 向量二维化 只允许一种数据类型 二维 data.frame 数据框-二维,每列只允许一种数据类型 1.数据框来源 1)用代码新建 2)由已有数据转换或处理得到 3)读取表格文件 4)R语言内置数据 2.新建和读取数据框 df1 <- data.frame(gene = paste0("gene",1:4),change = rep(c("up","down"),each = 2),
Awk是一种文本处理工具,它可以用来从文本文件中提取数据并对其进行处理。Awk命令非常强大,可以将它用于各种文本处理任务,包括数据转换、数据提取、报告生成等。在本文中,我们将深入探讨Awk命令的用法,并提供一些常见的示例。
在使用 R 语言的过程中,需要给函数正确的数据结构。因此,R 语言的数据结构非常重要。通常读入的数据并不能满足函数的需求,往往需要对数据进行各种转化,以达到分析函数的数据类型要求,也就是对数据进行“塑形”,因此,数据转换是 R 语言学习中最难的内容,也是最重要的内容。
自动化测试中我们存放数据无非是使用文件或者数据库,那么文件可以是csv,xlsx,xml,甚至是txt文件,通常excel文件往往是我们的首选,无论是编写测试用例还是存放测试数据,excel都是很方便的。那么今天我们就把不同模块处理excel文件的方法做个总结,直接做封装,方便我们以后直接使用,增加工作效率。
首先先简单说一下csv文件,csv的全称是Comma-Separated Values,意思是逗号分隔值,通俗点说就是一组用逗号分隔的数据。CSV文件可以用excel打开,会显示如下图所示:
df1 <- data.frame(gene=paste0("gene",1:4),
cut 译为“剪切, 切割”,是一个强大文本处理工具,它可以将文本按列进行划分的文本处理。cut命令逐行读入文本,然后按列划分字段并进行提取、输出等操作。
x2 = str_split(x," ")[[1]];x2 #是list 所以用[[]]
cut 是一种在 Linux 系统中实现文本处理的命令,主要用于提取文件中指定列的内容。它是一个非常有用的命令,可以帮助用户快速获取需要的信息。然而,在实际使用过程中,我们经常需要将输出结果保存到文件中,以便进行后续分析和处理。为了实现这个目标,我们需要掌握输出重定向符号的使用方法。本文将介绍 cut 命令的基本概念、进阶使用技巧和输出重定向符号的使用方法。
之前写 datamash 的使用教程 linux 极简统计分析工具 datamash 必看教程,收到了一位读者的私信,内容如上。
describe括号里的参数可以放具体的某一列的名称 (6)提取想看的列
这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像自己什么都会了一点,然而实际操作起来既不知从何操起,又漏洞百出。
各位读者朋友们,由于更新blog不易,如果觉得这篇blog对你有用的话,麻烦关注,点赞,收藏一下哈,十分感谢。
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。
把源数据汇总后,为了满足质量要求的数据,需要做数据清洗。PQ就好像变形金刚(英文版PowerBI的转换选项卡恰好也叫“Transform”),在转换选项卡中,集成了各类变形功能。使用频率最高的一般有12个小招: 首行作标题、修改数据类型、删除(重复、错误、空项目)、拆分、提取、合并、替换、填充、移动、排序、格式、逆透视。
第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(言)。即在一个数据库表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。
新手的小本本: (1)R的赋值符号不是等号,而是<- (2)在Console 控制台输入命令,相当于Linux的命令行 (3)R的代码都是带括号的,括号必须是英文的。 (4)显示工作路径 getw
这个肯定厉害了,是「大家闺秀」,是「名门望族」,是「根红苗正」的GWAS分析软件。
如何获取目标基因的转录因子(上)一文中我们以人类基因组为例,从ensemble网站下载了基因组中基因位置信息矩阵GRCh38.gene.bed和基因组中转录因子结合位点信息矩阵GRCh38.TFmotif_binding.bed)
获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values('a',inplace=True,ascending=True) , inplace 表示排序的时候是否生成一个新的 dataFrame , ascending=True 表示升序,默认为升序,如果存在缺失的补值( Nan ),排序的时候会将其排在末尾
read.table(file"mingzi",sep="\t",header=T)
目录 Linux 三剑客之awk 简介 应用场景 awk执行流程图 awk生命周期 awk内置(预定义)变量 行与列描述 取行 取列 awk中的函数 条件的分类 awk正则详细: 普通正则和awk正则区别 范围表达式 逻辑表达式 算术表达式 特殊模式BEGIN{}和END{} awk数组 awk 的 判断、循环 if循环 循环 总体练习 易错点: Linux 三剑客之awk 简介 awk主要是用来格式化文本,也有人称awk是一种语言,类似 C,awk 是三剑客的老大,利剑出鞘,必会不同凡响。 应
领取专属 10元无门槛券
手把手带您无忧上云