Linux下如何产生、加密或解密随机密码?密码是保护数据安全的一项重要措施,设置密码的基本原则是 “易记,难猜”,在Linux下可以轻易的产生、加密或解密随机密码。
你可以在各种 Linux 发行版上使用的这样一个有用的工具是 GNOME 的 Seahorse。
Vim 是一种流行的、功能丰富的和高度可扩展的 Linux 文本编辑器,它的一个特殊功能便是支持用带密码各种的加密方法来加密文本文件。
-pbkdf2 和 -iter 1000 选项则告诉 OpenSSL 使用 PBKDF2 密钥派生函数,并且进行1000次迭代,使得暴力破解更加困难。
将生成的加密密匙配置在配置文件中即可,ENC 是约定的关键字,在启动时会解析所有 PropertySource 中的加密属性。 4.1 这里更改yml配置中连接数据库的密码
保护操作系统中的敏感数据对于确保计算机的安全至关重要。在 Linux 系统中,你可以使用加密技术来保护根文件系统中的数据。加密根文件系统可以防止未经授权的访问和数据泄露。本文将介绍如何在 Linux 上加密根文件系统,并提供详细的步骤。
主要原因是HTTP数据传输时没有对数据进行加密,所以导致数据不安全。而HTTPS在HTTP上加了一层,对数据进行加密,这样就保证了数据的安全性。防止传输的数据过程中被不法分子盗用、劫持、篡改,而导致数据信息的泄露。
在我第一篇关于NBitcoin的文章之后,我决定写一个面向.NET开发者的,关于NBitcoin比特币网关的系列文章。
前几个月被授权进行某大型运营商的渗透,在过程中也是遇到了一些比较有意思的东西,特此记录一波
持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第32天,点击查看活动详情
1. 应用密码安全定义 应用密码包含:数据库密码、redis密码、通讯密码、pin密钥等。 本文的目标是确保上述密码在应用中不以明文形式,而是以加密形式存在,并且加密机制要相对安全,不易破解。 2. 本文关注范围 由于pin密钥之类的是通过硬件加密机实现的,不在本文论述范围内,本文重点关注应用侧配置文件中的数据库密码、**redis密码、FTP/FTPS**密码等。 3. 现状描述 1、很多系统并没有对密码安全足够重视,密码依然以明文状态为主。 例如:(以下配图均为测试环境的模拟举例) 数据库密码明文写在配
KALI的磁盘加密是用LUKS(Linux Unified Key Setup)加密的,这个软件不是kali/debian/ubuntu上特有的,各版本的linux都支持,使用AES加密,格式和truecrypt是兼容的,可以在加密后的磁盘上创建任意文件系统,但是加密后的磁盘不能直接挂载,必须要将分区映射到/dev/mapper下,所以为了方便管理磁盘,操作系统安装时都采用了 LVM on LUKS的方式,也就是全盘加密并在上面创建lvm分区。
1、CA系统各个设备众多,计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态。随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情。以Unix系统为例,时间的准确性几乎影响到所有的文件操作。 如果一台机器时间不准确,例如在从时间超前的机器上建立一个文件,用ls查看一下,以当前时间减去所显示的文件修改时间会得一个负值,这一问题对于网络文件服务器是一场灾难,文件的可靠性将不复存在。为避免产生本机错误,可从网络上获取时间,这个命令就是rdate,这样系统时钟便可与公共源同步了。但是一旦这一公共时间源出现差错就将产生多米诺效应,与其同步的所有机器的时间因此全都错误。
SSH(即安全外壳协议)是一种远程管理协议,允许用户通过 Internet 访问、控制和修改其远程服务器。SSH 服务是作为未加密 Telnet 的安全替代品而创建的,并使用加密技术来确保与远程服务器之间的所有通信都以加密方式进行。它提供了一种对远程用户进行身份验证、将输入从客户端传输到主机以及将输出中继回客户端的机制。
3、认证:为了防止攻击者伪装成真正的发送者,对应的密码技术有消息认证码和数字签名。
安全研究员Mathy Vanhoef发现的WPA2协议的KRA(Key Reinstallation Attacks)漏洞,利用WPA2协议标准加密密钥生成机制上的设计缺陷,四次握手协商加密密钥过程中第三个消息报文可被篡改重放,导致在用密钥被重新安装。
以太坊的私钥文件存储于数据目录(datadir指向或默认目录)下,对应的目录为keystore。所有的私钥文件都经过加密之后存储于此目录下。
多年以来,WhatsApp 的端对端加密服务一直是默认选项,旨在全力保护人们信息隐私,让信息的交换不经手任何人,仅收件人和发件人可见。现在,WhatsApp 计划让这项加密服务也应用到用户们的备份上。
现在大家的安全意识在逐步提高,也渐渐的对无线网络wifi的安全开始重视起来, 买路由器看安全不,然后WiFi密码设置的非常复杂。现在家庭的路由器的加密模式都是,WAP2/psk,他是WEP加密的升级版,下图就是WEP的加密过程:
不论是生活还是工作上,你一定都会有一些重要的文件不想让别人看到、甚至是窃取。很多人会把文件隐藏起来,但这其实很容易就能破解,而最安全的方法不外乎是加密。
介绍 研究人员发现WPA2的严重弱点,WPA2是保护所有现代受保护的Wi-Fi网络的协议。内的受害者的范围内的攻击者可以利用使用这些弱点.具体来说,攻击者可以使用这种新颖的攻击技术来读取先前假定为安全加密的信息。这可能被滥用以窃取敏感信息,如信用卡号,密码,聊天信息,电子邮件,照片等。 该攻击与所有现代受保护的Wi-Fi网络相抗衡。根据网络配置,还可以注入和操作数据。例如,攻击者可能能够将ransomware或其他恶意软件注入网站。 弱点在于Wi-Fi标准本身,而不是单独的产品或实现。因此,WPA2的正确实
只要一小段Python代码,就可以发动一场针对VMware ESXi服务器的、闪电战般的勒索攻击。从最初的入侵到最后的加密,整个过程只需要不到三个小时。
在使用加密技术和数据验证等密码学技术时,加密模式和填充必须显式指定。 在 Android 应用开发中使用加密时,你将主要使用java.crypto中的Cipher类。 为了使用Cipher类,你将首先通过指定要使用的加密类型,来创建Cipher类对象的实例。 这个指定被称为转换,并且有两种格式可以指定转换:
公共密钥密码体制于 1976 年提出,其原理是加密密钥和解密密钥分离。密码体制的基本模型如图 所示。
近日,Wi-Fi加密协议被曝光存在重大安全漏洞,用于保护Wi-Fi网络安全的WPA2 安全加密协议已被黑客破解。这种被称作“Krack”(密钥重装攻击)攻击意味着用户连接的绝大多数Wi-Fi已经不安全了,包括家中的路由器Wi-Fi,都存在被盗号的风险。攻击者可通过此漏洞获取万能密钥来访问WPA2网络,从而窃听用户的通讯信息。
非对称加密算法的特点是,密钥分为加密密钥和解密密钥,并且这两个密钥是不一样的(非对称)。发送者用加密密钥对消息进行加密,接受者用解密密钥对密文进行解密。
在当今数字化时代,密码的安全性至关重要。不正确的密码存储方法可能导致用户数据泄露、账户被盗或系统遭受恶意攻击。因此,采用最佳实践和安全的技术方案来存储密码是至关重要的。
SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定;SSH 为建立在应用层基础上的安全协议。SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。
有些场景下需要前端做加密,比如登录的时候,用户输入的密码需要传输给后端,为了保证安全,最好前端先加密后传输,后端接收到之后,再解密拿到明文。 需要在不同端进行加密解密的话 RSA 非对称加密算法最适合。
哈哈哈,其实只是周末看了小舞而已啦,铁铁们没追更的,赶快去补一下这集,特效炸裂。好了,不扯了,进入正题,最近做的项目,涉及到一些加密算法的选择,小羽在这里顺便也给大家做个总结,一起加深对加密的相关认识。
LUKS 实现了一种独立于平台的标准磁盘格式,用于各种工具。LUKS 用于加密块设备。加密设备的内容是任意的,因此可以加密任何文件系统,包括交换分区。加密卷的开头有一个未加密的标头,它允许存储多达 8 个 (LUKS1) 或 32 个 (LUKS2)加密密钥以及密码类型和密钥大小等加密参数。此标头的存在是 LUKS 和普通 dm-crypt 之间的主要区别,因为标头允许使用多个不同的密码短语,并且能够轻松更改和删除它们。但是,如果标头丢失或损坏,设备将不再可解密。LUKS (Linux Unified Key Setup)为提供了一个标准的磁盘加密格式,使得它不仅兼容性高,能通用于不同的 Linux 发行版本,还支持多用户/口令,并且由于它的加密密钥独立于口令,所以即使口令失密,我们也无需重新加密整个硬盘,只需要及时的改变口令即可重获安全。
简单地来说,是基于ssl的http协议,依托ssl协议,https协议能够确保整个通信是加密的,密钥随机产生,并且能够通过数字证书验证通信双方的身份,以此来保障信息安全。其中证书包含了证书所代表一端的公钥,以及一些其所具有的基本信息,如机构名称,证书所作用域名、证书的数字签名等,通过数字签名能够验证证书的真实性。通信的内容使用对称加密方式进行加密,通信两端约定好通信密码后,通过公钥对密码进行加密传输,只有该公钥对应的私钥,也就是通信的另一端才能够解密获得通信密码,这样既保证了通信的安全,也使加密性能和时间成本可控。
问题主要出现在 kgen.init(128, new SecureRandom(key.getBytes(DEFAULT_CHARSET))); 这样使用的话在 windows 系统是没有问题,但将程序部署到 Linux 服务器后发现每次加密之后获取的加密字符串都不同,导致无法解密。
一、加密 数据加密技术从技术上的实现分为在软件和硬件两方面。按作用不同,数据加密技术主要分为数据传输、数据存储、数据完整性的鉴别以及密钥管理技术这四种。 在网络应用中一般采取两种加密形式:对称密钥和公开密钥,采用何种加密算法则要结合具体应用环境和系统,而不能简单地根据其加密强度来作出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性,以及投入产出分析都应在实际环境中具体考虑。 对于对称密钥加密。其常见加密标准为DES等,当使用DES时,用户和接受方采用64位密钥对报文加密和解密,当对安全性有特殊要求时,则要采取 IDEA和三重DES等。作为传统企业网络广泛应用的加密技术,秘密密钥效率高,它采用KDC来集中管理和分发密钥并以此为基础验证身份,但是并不适合 Internet环境。 在Internet中使用更多的是公钥系统。即公开密钥加密,它的加密密钥和解密密钥是不同的。一般对于每 个用户生成一对密钥后,将其中一个作为公钥公开,另外一个则作为私钥由属主保存。常用的公钥加密算法是RSA算法,加密强度很高。具体作法是将数字签名和 数据加密结合起来。发送方在发送数据时必须加上数据签名,做法是用自己的私钥加密一段与发送数据相关的数据作为数字签名,然后与发送数据一起用接收方密钥 加密。当这些密文被接收方收到后,接收方用自己的私钥将密文解密得到发送的数据和发送方的数字签名,然后,用发布方公布的公钥对数字签名进行解密,如果成 功,则确定是由发送方发出的。数字签名每次还与被传送的数据和时间等因素有关。由于加密强度高,而且并不要求通信双方事先要建立某种信任关系或共享某种秘 密,因此十分适合Internet网上使用。 下面介绍几种最常见的加密体制的技术实现: 1.常规密钥密码体制 所谓常规密钥密码体制,即加密密钥与解密密钥是相同的。 在早期的常规密钥密码体制中,典型的有代替密码,其原理可以用一个例子来说明: 将字母a,b,c,d,…,w,x,y,z的自然顺序保持不变,但使之与D,E,F,G,…,Z,A,B,C分别对应(即相差3个字符)。若明文为student则对应的密文为VWXGHQW(此时密钥为3)。 由于英文字母中各字母出现的频度早已有人进行过统计,所以根据字母频度表可以很容易对这种代替密码进行破译。 2.数据加密标准DES DES算法原是IBM公司为保护产品的机密于1971年至1972年研制成功的,后被美国国家标准局和国家安全局选为数据加密标准,并于1977年颁布使用。ISO也已将DES作为数据加密标准。 DES对64位二进制数据加密,产生64位密文数据。使用的密钥为64位,实际密钥长度为56位(有8位用于奇偶校验)。解密时的过程和加密时相似,但密钥的顺序正好相反。 DES的保密性仅取决于对密钥的保密,而算法是公开的。DES内部的复杂结构是至今没有找到捷径破译方法的根本原因。现在DES可由软件和硬件实现。美国AT&T首先用LSI芯片实现了DES的全部工作模式,该产品称为数据加密处理机DEP。 3.公开密钥密码体制 公开密钥(public key)密码体制出现于1976年。它最主要的特点就是加密和解密使用不同的密钥,每个用户保存着一对密钥 ? 公开密钥PK和秘密密钥SK,因此,这种体制又称为双钥或非对称密钥密码体制。 在这种体制中,PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。公开密钥算法的特点如下: 1、用加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X 2、加密密钥不能用来解密,即DPK(EPK(X))≠X 3、在计算机上可以容易地产生成对的PK和SK。 4、从已知的PK实际上不可能推导出SK。 5、加密和解密的运算可以对调,即:EPK(DSK(X))=X 在公开密钥密码体制中,最有名的一种是RSA体制。它已被ISO/TC97的数据加密技术分委员会SC20推荐为公开密钥数据加密标准。 二、数字签名 数字签名技术是实现交易安全的核心技术之一,它的实现基础就是加密技术。在这里,我们介绍数字签名的基本原理。 以往的书信或文件是根据亲笔签名或印章来证明其真实性的。但在计算机网络中传送的报文又如何盖章呢?这就是数字签名所要解决的问题。数字签名必须保证以下几点: 接收者能够核实发送者对报文的签名;发送者事后不能抵赖对报文的签名;接收者不能伪造对报文的签名。 现在已有多种实现各种数字签名的方法,但采用公开密钥算法要比常规算法更容易实现。下面就
对于 Hadoop 的伪分布式和全分布式而言,Hadoop 的名称节点(NameNode)需要启动集群中所有机器的 Hadoop 的守护进程,这个过程可以通过 SSH 登陆来实现。Hadoop 并没有提供 SSH 输入密码登陆的形式,因此为了能够顺利登陆每台机器,需要将所有机器配置为名称节点可以无密码登陆的形式。
已然安装完毕,root密码为 “123456”,就是之前用ssl加密的那个 登陆web管理 https://192.168.1.111/cobbler_web #中间IP换成你自己的
黑客最常用的一个攻击方式,就是获取目标口令,有了对方密码口令,就相当于有了你家的入户门钥匙,那么接下来所面临的危险就可想而知了。
区块链技术的应用和开发,数字加密技术是关键。一旦加密方法遭到破解,区块链的数据安全将受到挑战,区块链的不可篡改性将不复存在。
不行。存储在数据库的数据面临很多威胁,有应用程序层面、数据库层面的、操作系统层面的、机房层面的、员工层面的,想做到百分百不被黑客窃取,非常困难。
神锁离线版自第一版发布以来就坚持做安全技术创新,不做差不多的密码管理器。我们团队针对当今的攻击手段做深入分析,将神锁离线版的抗攻击能力提升到最高水平,应对新的安全挑战。
随着信息技术的高速发展,作为保障信息安全的重要手段,密码技术已经逐渐渗透到我们信息生活的方方面面,无论是浏览网页、即时通讯聊天,还是银行转账和智能家居等等,都涉及了密码技术的使用。2021年11月《个人信息保护法》(以下简称《个保法》)正式实施,《个保法》第五十一条明确要求个人信息处理者采取加密等安全技术措施,确保确保个人信息处理活动符合法律、行政法规的规定,并防止未经授权的访问以及个人信息泄露、篡改、丢失。事实上,密码技术除了在个人信息的传输与存储等环节作为安全保障措施外,也是个人信息去标识化/匿名化的有效方式。
对象存储——Minio 初探中我们介绍了单机部署MinIO的过程,以及在控制台上的一些操作。因为在实际应用中,主要还是通过sdk进行操作,所以这里我们也开始介绍MinIO SDK的使用。MinIO SDK的官网地址:https://min.io/docs/minio/linux/developers/minio-drivers.html?ref=docs。从中可以看出,MinIO发布了.NET、Golang、Haskell、Java、JavaScript、Python共6种语言的SDK,接下来我们基于Java SDK来实现对MinIO的一些常规操作。
一、什么是RSA RSA公开密钥密码体制。所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。 在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。正是基于这种理论,1978年出现了著名的RSA算法,它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密
上一期我们说到 Alice 利用 Filecoin 网络分享调研报告给 Bob,为了在将调研报告传给 Bob 的过程中数据不被泄露,她采用 Bob 的公钥对调研报告再次进行加密,并将得到的密文传给了 Bob。
在你与Linux的交互中的某个时刻,你将会编写一个 shell 脚本,不管是 Bash 还是其他。它可能只是一行代码,也可能是你曾经编写的任何程序一样复杂。无论如何,它们都有助于使Linux成为地球上最灵活和强大的操作系统。
领取专属 10元无门槛券
手把手带您无忧上云