将图片看成类型为uint8的像素矩阵,因此我们可以将两个像素矩阵进行加减乘除等一些列运算,这也被称为像素运算,像素运算包括两种:
我经常发现自己需要在一堆不同的配置上执行相同的操作。到目前为止,意味着我需要在流水线上的同一阶段制作多个副本。当我需要修改时,必须在整个流水线的多个地方做相同的修改。对于一个更大型的流水线来说,即便维护很少的配置也会变得困难。声明式流水线1.5.0-beta1(可以从 Jenkins 实验性更新中心获取)添加了一个新的 matrix 部分,该部分能让我一次指定一个阶段列表,然后在多个配置上并行运行同一列表。让我们来看一看!
可以看到涉及的知识面还是比较广的。这里放出一张SLAM圈子里喜闻乐见的表达悲喜交加心情的漫画图,大家可以感受一下:
但是RNA-seq的分析肯定远不止那些啦,拿到基于基因的表达矩阵固然可以根据转录组经典表达量矩阵下游分析大全 里面的R包和代码进行统计可视化,但是表达矩阵并不是凭空产生,上游分析也需要我们有一定的认知,本次我们介绍的流程就会涵盖这些知识点。(很多朋友会下意识的认为RNA-seq数据的上游分析必然是基于Linux,其实也是可以使用bioconductor的全部R包来完成的哦!)
发现AUCell包使用了 GSE60361 数据集的单细胞转录组表达矩阵,是直接读取文本文件文件,代码具有学习价值,值得反复分享,如下:
GEMMA (Genome-wide Efficient Mixed Model Association) 是基于混合模型进行全基因组关联分析的工具。运行速度非常快,结果准确,使用也十分方便,非常适合初学者做GWAS分析。
Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 2019 Mar;567(7747):249-252.
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.
之前手眼标定数据不对,要分析找问题原因,这个过程还是有意思的。正值出差,搞起来也费劲。所以只能趁有兴致的时候多看点儿。总体思路是先参考别人已经成功的。本身opencv官方是有相机标定例程的,官方出版的。
今天我们来分享一个关于蛋白活性推断的内容,最近一段时间因为一篇文章的发表,运用基因表达来推断蛋白活性,文章在Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages,杂志 Cell,顶刊,其中就用到了单细胞转录组数据来推断蛋白活性,其中用到的软件是viper,2021年5月的一个软件,值得关注。
时代和技术在发展,如果站着不动,就会落后,这也就是为什么提倡“终身教育”。刻意练习,每日精进。让我们的知识不会落后太久。
但是有同学提问,它的单细胞表达量矩阵是五万到十万个细胞,并不想预先拆分成为单细胞亚群分组,所以没办法使用AverageExpression得到一个简单的表达量矩阵,想直接对全部的单细胞矩阵进行gsva,但是矩阵每次都会内存溢出,大家也可以尝试下面的代码:
项目负责人Philippe Tillet表示:「我们的目标是让Triton成为深度学习中CUDA的替代品」。
在未进行任何优化的情况下,Baby LLaMA 2 在运行15M参数的模型时,仅占用了部分CPU和内存资源(资源占用率均低于30%),但生成 token 的速度极慢,无法达到流畅生成故事的需求,本题需要采取各种手段优化其运行速度
因为现阶段传统bulk转录组测序项目成为了标准品,无论大家在哪个公司测序都是几百块钱一个样品,简单的3分组的6个样品,就包括了定量和普通差异分析服务,因为都是流程化的。但是有一些情况下是大家并不想自己重新收集样品或者联系公司做转录组测序服务,而是希望可以直接分析已经发表的文献里面的数据,找到一些感兴趣的基因和通路。我们也提供了大量的教学视频和代码,见:
(7)别只复制代码,要理解其中的命令、函数的意思。函数或者命令不会用时,除了百度/谷歌搜索以外,用这个命令查看帮助:?read.table,调出对应的帮助文档,翻到example部分研究一下。
看到我们生信技能树的教学群有学员提问这样的图如何绘制: 其实我们讲解过,绘图代码本身搜索即可拿到,关键词 ggpubr paired boxplot ,输入到 https://cn.bing.com
目前10x的单细胞转录组技术给出来的表达量矩阵,主要是Market Exchange Format (MEX)格式,每个样品都会有一个filtered_feature_bc_matrix文件夹,里面会有3个文件,如下所示:
看过黑客帝国的朋友想必对那一大片黑底绿色的画面印象颇深,其实在Linux中有一个工具可能展示出黑客帝国风格的画面,还可以当作屏保使用。
无论你是想快速入手Python,还是想成为数据分析大神或者机器学习大佬,亦或者对Python代码进行优化,本文的python库都能为你提供一些帮助。
◆ 动机 图神经网络(Graph Neural Networks)在图表示学习任务中获得了空前的成功。然而和深度学习的领域相比,图神经网络一个显著的特征是,网络在浅层的时候(层数只有2-3层)就取得了最好的表现。如果我们继续加深图神经网络,那么其表现反而会快速下降。这和深度学习中的内核“深度”二字相违背。 训练集和测试集准确率v.s.模型深度 为了探究为什么图神经网络会表现出这样的行为,以及设计出新的算法来提升深度图神经网络的表现。我们从网络的可训练性(trainability)角度来探究深度图神经网络背
由于EasyNVR视频平台分为软件版本和硬件版本的智能云终端,因此用户可以根据自身需求选择。根据某位用户的要求,需要在EasyNVR智能云终端中增加控制矩阵功能,因此我们在EasyNVR硬件内测试通过串口通信控制矩阵,但是在打开串口时遇到报错serial.Open: invalid values for InterCharacterTimeout and MinimumReadSize。
对于 OTU 矩阵这样稀疏的组成数据,我们往往会用专门的统计方法来计算其相关性,进行网络分析,一般最常用的就是 SparCC,但其性能限制了高维数据集交互网络的计算。FastSpar 在 SparCC 算法的基础上进行改进,用 C++ 将算法重写,使其更为高效且支持并行运算。与 SparCC 相比,FastSpar 的运算结果几乎相同,同时可将计算时间减少 2-3 个数量级,并且占用内存更少。
Matrix 项目的概念是在不同的版本中测试多种类型的相似技术。Matrix构建相互独立,因此可以并行运行。例如,可能要跨多个Java版本构建其项目测试。
但是接下来大家又想问,同样的想比较两个分组的免疫评分的差异,但是免疫评分的工具太多了,比如有一个2019的综述文章:《Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology》比较了常见的免疫细胞比例推断工具的表现,另外一个2018的综述《Quantifying tumor-infiltrating immune cells from transcriptomics data》提到工具更多,起码十几款了。大家也不可能一一研读,下载,测试,使用它。但是又确实看到了大量数据挖掘文章都使用了这些免疫评分信息啊,比如:新鲜出炉(2021年6月)的文章:《Identification of a Ferroptosis- Related LncRNA Signature as a Novel Prognosis Model for Lung Adenocarcinoma》 ,就对比了 ESTIMATE, TIMER, MCP counter, CIBERSORTx,和ssGSEA ,如下所示:
在现实生活中,我们常常会用到两种或多种类型的笔,比如毛笔和蜡笔。假设我们需要大、中、小三种类型的画笔来绘制12中不同的颜色,如果我们使用蜡笔,需要准备3*12=36支。但如果使用毛笔的话,只需要提供3种型号的毛笔,外加12个颜料盒即可,涉及的对象个数仅为3+12=15,远远小于36却能实现与36支蜡笔同样的功能。如果需要新增一种画笔,并且同样需要12种颜色,那么蜡笔需要增加12支,而毛笔却只需要新增1支。通过分析,在蜡笔中,颜色和型号两个不同的变化维度耦合在一起,无论对其中任何一个维度进行扩展,都势必会影响另外一个维度。但在毛笔中,颜色和型号实现了分离,增加新的颜色或者型号都对另外一方没有任何影响。在软件系统中,有些类型由于自身的逻辑,它具有两个或多个维度的变化。为了解决这种多维度变化,又不引入复杂度,这就要使用今天介绍的Bridge桥接模式。
现实生活中我们经常会遇到两种类型的笔,他们分别是毛笔和蜡笔。假设需要使用大、中、小3种型号的画笔来绘制12种不同的颜色。如果使用蜡笔,需要3 X 12 = 36 支。但是如果是毛笔的话,就不一样了,我们只需要3种型号的毛笔,和12盒颜料即可,涉及的对象个数仅为 3 + 12 = 15,要远远小于36,但是却可以实现与36种蜡笔一样的效果。如果要增加一种新型号的画笔,并且也需要12种颜色,相应的蜡笔需要增加12支,但是毛笔只需要增加一支即可。通过分析得知:在蜡笔中,颜色和型号两个不同的变化维度耦合在一起,无论是对颜色进行扩展,还是对型号进行扩展,都会对另一种维度产生影响。但在毛笔中,颜色和型号进行了分离,增加新的颜色或型号对另一方都没有任何影响。如果使用软件工程中的术语,可以认为,在蜡笔中颜色和型号之间存在较强的耦合性,而毛笔很好的将二者解耦,使用起来非常灵活,扩展也更为方便。在软件开发中,也提供了一种设计模式来处理与画笔类似的具有多变化维度的情况,即接下来要学习的桥接模式。
这个肯定厉害了,是「大家闺秀」,是「名门望族」,是「根红苗正」的GWAS分析软件。
前言 从刚开始接触Mxnet这个框架到现在已经大概四个月了。Mxnet最吸引我的地方就是它提供了 很多语言的接口,其中有Scala(my favorite),这是我从Caffe转过来的原因之一。 Mxnet是我第一个参与的开源项目,可以说这四个月来我学到了很多东西。 本文的其中目的在于介绍一下如何用 Mxnet Scala 包来开发自己的 deep learning 的应用,有 哪些坑需要注意的,最后就是安利一下Mxnet 这个框架了。 然后,还有就是Mxnet Scala Pack
课程首先介绍了深度学习的很多应用:例如增强学习、物体识别、语音识别、机器翻译、推荐系统、广告点击预测等。
在本节课程中,我们将开始学习如何从攻击者的角度思考,一起探讨常见的容器和K8s攻击手法,包含以下两个主要内容:
基因组点图(Genome Dot Plot)是一种用于比较两个或多个基因组的工具。它通过在一个二维矩阵中绘制基因组序列的相似性来显示基因组之间的相对关系。点图中的每个点代表一个基因组中的一段序列,而整个图像则反映了序列之间的相似性和差异性。
群主想看到,HCC,CHC,CC这3组,跟healthy的分开比较,然后3个火山图,3个热图。
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Allwinner 平台支持三种不同类型的Key:GPIO-Key,ADC-Key,AXP-Key。其中,GPIOKey又包括普通的gpio 按键和矩阵键盘。
如果你想要编译的代码更快(推荐),确保你安装了g++(Windows/Linux)或Clang(OS X)。
Erasure Code(EC),即纠删码,是一种前向错误纠正技术(Forward Error Correction,FEC,说明见后附录)。目前很多用在分布式存储来提高存储的可靠性。相比于多副本技术而言,纠删码以最小的数据冗余度获得更高的数据可靠性,但是它的编码方式比较复杂。
前面我布置了一系列学徒作业, 终于开始陆陆续续收到答案啦!下面的教程来自于7月的数据挖掘学员,对应的题目是:仅提供bam文件的RNA-seq项目重新分析
在前面的博客中,我们介绍过关于numpy中的张量网络的一些应用,同时利用相关的张量网络操作,我们可以实现一些分子动力学模拟中的约束算法,如LINCS等。在最新的nightly版本的MindSpore中也支持了爱因斯坦求和的算子,这是在张量网络中非常核心的一个操作,本文就简单介绍一下MindSpore中使用爱因斯坦求和的方法。
在前面两篇文章R语言入门系列之一与R语言入门系列之二中,我分别介绍了R语言中的对象与结构、数据的输入输出及可视化。基于前面的基础,今天我介绍一下R语言中基础的程序结构,来帮助我们完成更复杂的数据处理任务。此外,如果你有大批量数据处理、可视化任务,需要着重学习R脚本在命令行的调用方式以及命令行参数的使用方法。
Tengine 是OPEN AI LAB 针对前端智能设备开发的软件开发包,核心部分是一个轻量级,模块化,高性能的AI 推断引擎,并支持用DLA、GPU、xPU作为硬件加速计算资源异构加速。
但是如果要下载成百上千个文件,最好是使用代码批量下载,而且现在单细胞技术的大行其道,使得表达量矩阵文件本身也会很巨大,比如:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253013 ,可以看到如下所示9.3 Gb文件 :
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
GCTA官网:https://yanglab.westlake.edu.cn/software/gcta/#Download
在前几期,我们提到了NUMA的概念。实际上,NUMA这个概念的内涵和外延,在不同的语境中会产生变化。
领取专属 10元无门槛券
手把手带您无忧上云