所谓惊群现象,简单的来说就是当多个进程或线程在同时阻塞等待同一个事件时,如果该事件发生,会唤醒在等待的所有的进程/线程,但最终只可能有一个进程/线程对该事件进行处理,其他进程/线程会在失败后重新休眠,唤醒多个进程/线程这种不必要的行为会造成系统资源的浪费(涉及到进程的上下文切换)。而常见的惊群问题有accept惊群、epoll惊群。
一切互斥操作的依赖是 自旋锁(spin_lock),互斥量(semaphore)等其他需要队列的实现均需要自选锁保证临界区互斥访问。
决定一次负载均衡是否要发生有很多的规则,因此也就很难推断如果有工作可作时一个空闲核能够维持空闲多久,也很难推断在系统中有空闲核时,任务变为可运行状态前还要在运行队列里等待多久。因为之前极少数的开发者可以在第一次就写出完美的代码,这种复杂性又导致了bug的出现。弄明白这个bug是必要的,这样才能搞明白为什么他们避开了传统的测试和调试工具。因此,我们首先将描述这引起bug, 延后在展示我们所使用的工具。
linux下的 pthread 是一个整形,而 id 是一个自定义类型, get_id 即打印线程id
本文是《Go语言调度器源代码情景分析》系列的第19篇,也是第四章《Goroutine被动调度》的第2小节。
在之前的Netty之线程唤醒wakeup文章中, 介绍了如何唤醒Netty中的监听线程. 接下来我们通过部分源码,结合一些命令和实验,看一下它的实现.
这是一篇介绍Linux调度问题的文章,源自这篇文章。文章中涉及到的一些问题可能已经得到解决,但可以学习一下本文所表达的思想和对CPU调度的理解。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/huangweiqing80/article/details/83088465
服务器端为了能流畅处理多个客户端链接,一般在某个线程A里面accept新的客户端连接并生成新连接的socket fd,然后将这些新连接的socketfd给另外开的数个工作线程B1、B2、B3、B4,这些工作线程处理这些新连接上的网络IO事件(即收发数据),同时,还处理系统中的另外一些事务。这里我们将线程A称为主线程,B1、B2、B3、B4等称为工作线程。工作线程的代码框架一般如下: while (!m_bQuit) { epoll_or_select_func(); hand
本文来自 Marek’s 博客中 I/O multiplexing part 系列之三和四,原文一共有四篇,主要讲 Linux 上 IO 多路复用的一些问题,本文加入了我的一些个人理解,如有不对之处敬请指出。原文链接如下:
线程同步可以说在日常开发中是用的很多, 但对于其内部如何实现的,一般人可能知道的并不多。 本篇文章将从如何实现简单的锁开始,介绍linux中的锁实现futex的优点及原理,最后分析java中同步机制如wait/notify, synchronized, ReentrantLock。
当在try_to_wake_up/wake_up_process和wake_up_new_task中唤醒进程时, 内核使用全局check_preempt_curr看看是否进程可以抢占当前进程可以抢占当前运行的进程. 请注意该过程不涉及核心调度器.
[Linux](https://www.2cto.com/os/linux/)下使用 Pthread库中的 pthread_cond_*() 函数提供了与条件变量相关的功能。
要理解第一个问题,得先从ACPI(高级配置与电源接口)说起,ACPI是一种规范(包含软件与硬件),用来供操作系统应用程序管理所有电源接口。
在线程并发执行的时候,我们需要保证临界资源的安全访问,防止线程争抢资源,造成数据二义性。
作为资源管理的核心部分,OS的线程调度器必须保持下面这样简单,不变的特性: 确保ready状态的线程总是被调度到有效的CPU核上。虽然它看起来是简单的,我们发现这个不变性在Linux上经常被打破。当ready状态的线程在runqueue中等待时,有些CPU核却还会空闲几秒。以我们的经验,这类性能方面的问题会导致重度依赖同步的应用的性能成倍的下降,针对Kernel编译会多造成高达13%的延迟,针对广泛使用的商用数据库会造成23%的吞吐量降低。传统的测试技术和调试工具对于确认和了解这类问题是无效的,因此这些问题的症状经常是难以捕获的。为了能够推动我们的调查,我们构建了新的工具来在线检测这种违反不变性的情况并且将调度行为可视化。这些工具是简单的,易于在多个kernel版本间移植的并且使用的代价很小。我们相信这些工具将成为内核开发者工具链的一部分来帮助其避免这类问题的出现。
简单来说,深度睡眠的进程必须等待资源来了才能醒,在此之前,甚至你给它发任何的信号,它都不可能醒来。
Android进程与线程 进程 前台进程 可见进程 服务进程(service进程) 后台进程 空进程 Android线程间通信有哪几种方式 Devik进程和Linux进程的区别 进程保活(不死进程) 当前Android进程保活手段主要分为 黑、白、灰 三种 黑色保活 白色保活 灰色保活 进程 前台进程 可见进程 服务进程 后台进程 空进程 前台进程 // 前台进程 当前进程activity正在与用户进行交互。 当前进程service正在与activity进行交互或者当前service调用了startF
惊群效应也有人叫做雷鸣群体效应,不过叫什么,简言之,惊群现象就是多进程(多线程)在同时阻塞等待同一个事件的时候(休眠状态),如果等待的这个事件发生,那么他就会唤醒等待的所有进程(或者线程),但是最终却只可能有一个进程(线程)获得这个时间的“控制权”,对该事件进行处理,而其他进程(线程)获取“控制权”失败,只能重新进入休眠状态,这种现象和性能浪费就叫做惊群。
如果需要多个进程合作来完成某个任务,那个可能会存在资源争用或者其他一些意想不到的问题,这个时候,就需要通过实现进程同步来防止问题的产生。
妈妈怎么知道卧室里小孩醒了? ① 时不时进房间看一下:查询方式 简单,但是累 ② 进去房间陪小孩一起睡觉,小孩醒了会吵醒她:休眠-唤醒 不累,但是妈妈干不了活了 ③ 妈妈要干很多活,但是可以陪小孩睡一会,定个闹钟:poll方式 要浪费点时间,但是可以继续干活。 妈妈要么是被小孩吵醒,要么是被闹钟吵醒。 ④ 妈妈在客厅干活,小孩醒了他会自己走出房门告诉妈妈:异步通知 妈妈、小孩互不耽误
作者:小傅哥 博客:https://bugstack.cn ❝沉淀、分享、成长,让自己和他人都能有所收获!? ❞ 目录 一、前言 二、面试题 三、线程启动分析 四、线程启动过程 1. Thread
OSTEP中有一段Linux下的互斥锁源代码没有很细研读,今日被tdl,ldl一阵教诲,有所醍醐灌顶。以此笔记。
锁Lock,正如现实中的锁一样,决定了对于资源的访问权。在并发编程中,由于资源共享的缘故,一个线程中的write操作有可能影响到另一个线程的read操作。
Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中。
Futex 是Fast Userspace muTexes的缩写,由Hubertus Franke, Matthew Kirkwood, Ingo Molnar and Rusty Russell共同设计完成。
《手摸手系列》把go sync包中的并发组件已经写完了,本文作为完结篇,最后再来探讨下go运行时锁的实现。记得在《手摸手Go 并发编程的基建Semaphore》那篇中我们聊过sync.Mutex最终是依赖sema.go中实现的sleep和wakeup原语来实现的。如果细心的小伙伴会发现:
在Linux 中,仅等待 CPU 时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状 态标志位为 TASK_RUNNING。一旦一个运行中的进程时间片用完, Linux 内核的调度器会剥夺这个进程对 CPU 的控制权,并且从运行队列中选择一个合适的进程投入运行。
在linux系统中, 我们接触最多的莫过于用户空间的任务,像用户线程或用户进程,因为他们太活跃了,也太耀眼了以至于我们感受不到内核线程的存在,但是内核线程却在背后默默地付出着,如内存回收,脏页回写,处理大量的软中断等,如果没有内核线程那么linux世界是那么的可怕!本文力求与完整介绍完内核线程的整个生命周期,如内核线程的创建、调度等等,当然本文还是主要从内存管理和进程调度两个维度来解析,且不会涉及到具体的内核线程如kswapd的实现,最后我们会以一个简单的内核模块来说明如何在驱动代码中来创建使用内核线程。
Boost::asio io_service 实现分析 io_service的作用 io_servie 实现了一个任务队列,这里的任务就是void(void)的函数。Io_servie最常用的两个接口是post和run,post向任务队列中投递任务,run是执行队列中的任务,直到全部执行完毕,并且run可以被N个线程调用。Io_service是完全线程安全的队列。 Io_servie的接口 提供的接口有run、run_one、poll、poll_one、stop、reset、dispatch、post,最常
不同版本的操作系统的 buffer_head 代表的大小可能不一样,但是都是内存和硬盘交换数据的基本单元。
本文为Linux-RT内核应用开发教程的第一章节——Linux-RT内核简介、Linux系统实时性测试,欢迎各位阅读!本期用到的案例板子是创龙科技旗下的A40i工业级别开发板,是基于全志科技A40i处理器设计,4核ARM Cortex-A7的高性能低功耗国产开发板,每核主频高达1.2GHz。
workerman使用pcntl_fork()来实现master/worker的多进程模型,每个worker进程通过使用stream_socket_server()函数来创建socket,由于fork创建的worker进程具备亲缘关系,所以不同的worker进程可以对相同的端口监听;不同worker进程监听相同的socket,在该socket存在事件时,所有监听该socket的worker进程会被唤醒,所有worker进程对socket资源进行抢占式处理,但最终只有一个worker进程可以对socket进行accept;在这个过程中就存在n-1个worker进程是无效调度的,仅仅只是被唤起了然后抢占失败并再次入眠。
线程同步可以说在日常开发中是用的很多,但对于其内部如何实现的,一般人可能知道的并不多。本篇文章将从如何实现简单的锁开始,介绍linux中的锁实现futex的优点及原理。
最近在开发一个项目,需要用到高精度的延时机制,设计需求是 1000us 周期下,误差不能超过 1%(10us)。
而AQS中的控制线程又是通过LockSupport类来实现的,因此可以说,LockSupport是Java并发基础组件中的基础组件。LockSupport定义了一组以park开头的方法用来阻塞当前线程,以及unpark(Thread thread)方法来唤醒一个被阻塞的线程。LockSupport提供的阻塞和唤醒方法如下:
很久没有写技术文章了,做码农难,做养娃的码农更难,趁着娃看动画片的机会,受着王菲童鞋《我和我的祖国》歌唱精神的鼓舞,我要来说几句。
1 Linux 进程的睡眠和唤醒 在 Linux 中,仅等待 CPU 时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状 态标志位为 TASK_RUNNING。一旦一个运行中的进程时间片用完, Linux 内核的调度器会剥夺这个进程对 CPU 的控制权,并且从运行队列中选择一个合适的进程投入运行。 当然,一个进程也可以主动释放 CPU 的控制权。函数 schedule() 是一个调度函数,它可以被一个进程主动调用,从而调度其它进程占用 CPU。一旦这个主动放弃 CPU 的进程被重新调度
Java多线程开发中,如果涉及到共享资源操作场景,那就必不可少要和Java锁打交道。
对于在校学习期间的计算机、软件工程的学生来说,只要学到 Java 多线程,就开始犯迷糊了!
muduo是陈硕大神个人开发的C++的TCP网络编程库。muduo基于Reactor模式实现。Reactor模式也是目前大多数Linux端高性能网络编程框架和网络应用所选择的主要架构,例如内存数据库Redis和Java的Netty库等。
本文基于OSDI-18收录的《Arachne: Core-Aware Thread Management》翻译整理而成。
进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)
上周线程崩溃为什么不会导致 JVM 崩溃在其他平台发出后,有一位小伙伴留言说有个地方不严谨
RT-Linux(Real-Time Linux)亦称作实时Linux,是Linux中的一种硬实时操作系统,它最早由美国墨西哥理工学院的V.Yodaiken开发。
BIO(Blocking IO) 又称同步阻塞IO,一个客户端由一个线程来进行处理
第一次听到的这个名词的时候觉得很是有趣,不知道是个什么意思,总觉得又是奇怪的中文翻译导致的。
在看完《Java多线程编程核心技术》与《Java并发编程的艺术》之后,对于多线程的理解到了新的境界. 先拿如下的题目试试手把.
领取专属 10元无门槛券
手把手带您无忧上云