一般来说,从文件系统中获得文件变化信息,调用操作系统提供的 API 即可。Windows 操作系统上有个名为 ReadDirectoryChangesW 的 API 接口,只要监视一个目录路径就可以获得包括其子目录下的所有文件变化信息,简单高效;接口的支持度也很广,现有主流的 Windows 操作系统都支持,往前还可以追溯到 Windows 2000。对码农来说,能提供稳定有效且好用的 API 的系统就是好系统。而本文将讨论 iGuard 网页防篡改系统在 Linux 上获取文件变化信息的方法及从 NFS 网络文件系统中获取文件变化时遇到的困难和心得。
通常的分析手法如下(转自:https://blog.csdn.net/xiaolli/article/details/56012228): (1). 确定是哪类文件打开太多,没有关闭.
epoll简介 epoll 是Linux内核中的一种可扩展IO事件处理机制,最早在 Linux 2.5.44内核中引入,可被用于代替POSIX select 和 poll 系统调用,并且在具有大量应用程序请求时能够获得较好的性能( 此时被监视的文件描述符数目非常大,与旧的 select 和 poll 系统调用完成操作所需 O(n) 不同, epoll能在O(1)时间内完成操作,所以性能相当高),epoll 与 FreeBSD的kqueue类似,都向用户空间提供了自己的文件描述符来进行操作。 [cpp]
NanoDump是一款功能强大的MiniDump转储文件提取工具,在该工具的帮助下,广大研究人员可以轻松转储LSASS进程中的MiniDump数据。
本文档对内核的 GPIO 接口使用进行详细的阐述,让用户明确掌握 GPIO 配置、申请等操作的编程方法。
对于编程语言来说,文件和目录的操作是其最最基础的功能。就像我们日常中最常见的图片上传、文件上传之类的功能,都需要文件和目录操作的支持。今天我们先来简单地学习一下 PHP 中关于目录操作的一些类和函数。
什么是epoll epoll是什么?按照man手册的说法:是为处理大批量句柄而作了改进的poll。当然,这不是2.6内核才有的,它是在2.5.44内核中被引进的(epoll(4) is a new API introduced in Linux kernel 2.5.44),它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。 epoll的相关系统调用 epoll只有epoll_create,epoll_ctl,epoll_wait 3个系统调用。 1. int ep
最近工作的时候一个接入服务需要测性能测试,万万没想到测出了一个把 linux 句柄打满的问题
我们日常测试中,有时候有些辅助程序文件比如一些配置文件需要放在主程序执行文件同样的位置,便于管理和调用,这时候我们就需要获取执行文件的绝对路径。
好多开发者,问我们最多的问题是,为什么要设计轻量级RTSP服务?轻量级RTSP服务,和RTSP服务有什么区别?
在服务器运维过程中,经常需要对服务器的各种资源进行监控,例如:CPU的负载监控,磁盘的使用率监控,进程数目监控等等,以在系统出现异常时及时报警,通知系统管理员。本文介绍在Linux系统下几种常见的监控需求及其shell脚本的编写。
在 Linux 平台上运行的进程都会从系统资源申请一定数量的句柄,而且系统控制了进程能够申请的最大句柄数量。用户程序如果不及时释放无用的句柄,将会引起句柄泄露,从而可能造成申请资源失败,导致系统文件句柄用光连接不能建立。本文主要介绍Linux下如何查看和修改进程打开的文件句柄数,避免这类问题的发生。
当多个进程或多个程序都想要修同一个文件的时候,如果不加控制,多进程或多程序将可能导致文件更新的丢失。
传统的配置 pin 的方式就是直接操作相应的寄存器,但是这种配置方式比较繁琐、而且容易出问题(比如 pin 功能冲突)。pinctrl 子系统就是为了解决这个问题而引入的,pinctrl 子系统主要工作内容如下:
无论对Spark集群,还是Hadoop集群等大数据相关的集群进行调优,对linux系统层面的调优都是必不可少的,这里主要介绍3种常用的调优:
a) iocp 是完全线程安全的,即同时可以有多个线程等待在 iocp 的完成队列上;
说这个问题是在是惭愧, 到底为什么惭愧结尾说, 事情是MYSQL 8.011 的一些机器的max_connections 经常被改为214, 而明明我们的设置的是2000的最大连接数, 但过一段时间就会被改为214.
可以发现,很明显是Nginx返回的错误。但是从接口返回看不出太多的细节问题,需要打印nginix日志查看
ERROR 1040(HY000): Too many connections:DB连接池里已有太多连接,不能再和你建立新连接。
上面两个图片想必大家都见过也用过,那就是QQ的窗口抖动功能,今天给大家带来的就是用C来实现类似QQ窗口抖动的小知识,其实窗口的抖动的原理就是让它在不同的几个位置停顿一小下然后再来回移动,我们先来看代码,稍后再进行解释。
首先,Android利用Binder进行通信的话,肯定要首先获取Binder对象。
最近遇到一个非常有趣的问题。其中有一组HAProxy,频繁出现问题。登录上服务器,cpu、内存、网络、io一顿猛查。最终发现,机器上处于TIME_WAIT状态的连接,多达6万多个。
今天介绍一个可以拿出去吹牛的功能:实现socket句柄在进程之间迁移!为了这篇文章,xjjdog可算下了苦功夫,半夜还在翻资料。因为需要验证后,才能证明这项技术确实是正确的。
Reactor 与 Proactor 模型是近几年技术领域频频提到的两个设计模式,那么,究竟什么是 Reator,什么又是 Proactor,他们之间有什么异同呢? 本文就来详细介绍一下。
程磊,某手机大厂系统开发工程师,阅码场荣誉总编辑,最大的爱好是钻研Linux内核基本原理。 一、进程间通信的本质
I/O模型主要包括:阻塞IO、非阻塞IO、I/O 多路复用、异步I/O和信号I/O;
在文件I/O中,要从一个文件读取数据,应用程序首先要调用操作系统函数并传送文件名,并选一个到该文件的路径来打开文件。该函数取回一个顺序号,即文件句柄(file handle),该文件句柄对于打开的文件是唯一的识别依据。要从文件中读取一块数据,应用程序需要调用函数ReadFile,并将文件句柄在内存中的地址和要拷贝的字节数传送给操作系统。当完成任务后,再通过调用系统函数来关闭该文件。
Linux服务器,使用df -h查看文件系统使用率,可以看到/dev/xvdb1磁盘占用了约27G,挂载目录为/opt。
文件句柄(File Handle)是操作系统中用于访问文件的一种数据结构,通常是一个整数或指针。文件句柄用于标识打开的文件,每个打开的文件都有一个唯一的文件句柄。
Redis的高性能和他的事件模型是密不可分的,最大程度上利用了单线程、非阻塞IO模型来快速的处理请求(单线程处理多链接)。这里存在一个问题,其实严格意义上来讲,Redis 是单线程对外提供服务,redis内部并不单线程的,还存在一些关于数据持久化的线程。
为了实现跨平台,需要将差异性接口抽象出来,我们整个组件需要抽象几个内容:①日志接口;②内存管理接口;③ 线程接口;④互斥量接口;⑤信号量接口。以CMSIS接口为例的实现:
对于很多大文件的增量读取,如果遍历每一行比对历史记录的输钱或者全都加载到内存通过历史记录的索引查找,是非常浪费资源的,网上有很多人的技术博客都是写的用for循环readline以及一个计数器去增量读取,这样是十分脑残的,假如文件很大,遍历一次太久。 我们需要了解获取文件句柄的基本理论,其中包含的指针操作等。 原理是这样子,linux的文件描述符的struct里有一个f_pos的这么个属性,里面存着文件当前读取位置,通过这个东东经过vfs的一系列映射就会得到硬盘存储的位置了,所以很直接,很快。 以下是利用python实战代码,核心函数tell(),seek(). 也是调用的系统调用seek tell seek()的三种模式: (1)f.seek(p,0) 移动当文件第p个字节处,绝对位置 (2)f.seek(p,1) 移动到相对于当前位置之后的p个字节 (3)f.seek(p,2) 移动到相对文章尾之后的p个字节 tell(): 返回当前文件的读取位置。 代码: #!/usr/bin/python fd=open("test.txt",'r') #获得一个句柄 for i in xrange(1,3): #读取三行数据 fd.readline() label=fd.tell() #记录读取到的位置 fd.close() #关闭文件 #再次阅读文件 fd=open("test.txt",'r') #获得一个句柄 fd.seek(label,0)# 把文件读取指针移动到之前记录的位置 fd.readline() #接着上次的位置继续向下读取 后续:今儿有一人问我如何得知这个大文件行数,以及变化,我的想法是 方法1: 可以去遍历'\n'字符。 方法2: 从一开始就用for循环fd.readline()进行计数,然后变化的部分(用上文说的seek、tell函数做)再用for循环fd.readline()进行统计增加行数。
1.概述 在实际工作中会经常遇到一些bug,有些就需要用到文件句柄,文件描述符等概念,比如报错: too many open files, 如果你对相关知识一无所知,那么debug起来将会异常痛苦。在Linux操作系统中,文件句柄(包括Socket句柄)、打开文件、文件指针、文件描述符的概念比较绕,而且windows的文件句柄又与此有何关联和区别?这一系列的问题是我们不得不面对的。 这里先笼统的将一下自己对上面的问题的一些理解: 句柄,熟悉Windows编程的人知道:句柄是Windows用来标识被应用程序
Python 3.x 中 input() 函数可以实现提示输入,python 2.x 中要使用 raw_input(),例如:
“too many open files”这个错误大家经常会遇到,因为这个是Linux系统中常见的错误,也是云服务器中经常会出现的,而网上的大部分文章都是简单修改一下打开文件数的限制,根本就没有彻底的解决问题。
IO复用是串行的a有问题处理a的,但是a的问题要处理10个小时b就得等待10个小时
在Linux系统内默认对所有进程打开的文件数量有限制(也可以称为文件句柄,包含打开的文件,套接字,网络连接等都算是一个文件句柄)
在一个工作中的实践项目中,项目是一个部署到linux下的中间件项目,当收到一个Client登录的时候,需要为这个Client打开四个文件,当进行 多用户的大压力测试的时候,程序就出问题了: too many opened files。 网上一查,发现有人也碰到过类似的socket/File: Can’t open so many files问题。 在此总结一下这个问题,希望对后来之人有点帮助。
PSUtil库是Python的一个第三方库,它可以访问各种系统信息和资源利用率,如CPU,内存,磁盘,网络接口,进程等。在Linux、Windows、Mac OS X、FreeBSD等操作系统中,PSUtil提供了一致的接口,这使得它成为了Python系统管理和监控的有力工具。PSUtil支持Python2和Python3版本,使用非常方便,安装后只需import就可以使用了。
蓝牙是一种短距的无线通讯技术,可实现固定设备、移动设备之间的数据交换。可以说蓝牙是当今世界上,最受欢迎和使用最为广泛的无线技术之一。随着物联网的快速发展,蓝牙技术也加速了其发展步伐以适应不断增长的市场和用户需求。蓝牙特别兴趣小组(SIG)正不断努力提高蓝牙的传输速度,以让蓝牙技术更好的融合于各种物联网设备当中。
一位工作5年的小伙伴面试时被问到IO相关的问题,说,谈谈你对IO多路复用机制的理解。当时他说只是听过多路复用,具体细节没有了解过。今天,我给大家分享一下我的理解。
打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。
PDOStatement::errorInfo — 获取跟上一次语句句柄操作相关的扩展错误信息(PHP 5 = 5.1.0, PECL pdo = 0.1.0)
需求背景: 后台业务逻辑类服务,其实现通常都会依赖其他外部服务,比如存储,或者其他的逻辑server。 有一类比较典型的问题: 假设主调方A是同步处理模型,有一个关键路径是访问B服务。 当被调服务B延迟很高时,主调方A的进程会挂起等待,导致后来的A请求也无法及时处理,从而影响整个A服务的处理能力。甚至出现A服务不可用。 当然,比较理想的是B出现过载或者故障时,A的服务能力能够降到和B同等的服务能力,而非不可用。 因此,部门会定期进行容灾演习,也期望能够验证到各个服务的"最差服务能力"。即验证被调出现较高延迟
工作当中遇到的事情比较杂,因此涉及的知识点也很多。这里暂且记录一下,今天遇到的知识点,纯干货~ 关于文件的解压和压缩 如果你的系统不支持tar -z命令 如果是古老的Unix系统,可能并不认识tar -z命令,因此如果你想要压缩或者解压tar.gz的文件,就需要使用gzip或者gunzip以及tar命令了。 关于tar.gz可以这么理解,tar结尾的压缩包,其实只负责把文件打包,并没有进行压缩;而gz结尾的包,则是进行压缩操作。 因此,tar.gz的文件可以理解为,先进行打包,再进行压缩。 那么,压缩
使用Linux的rename机制保证文件写入要么成功,要么失败,绝对不能出现写了一半的情况。
基于X86架构的Linux内核,在移植驱动的过程中,发现GPIO和I2C的device ID添加到pnp驱动框架后无法进入probe函数,后面找了下原因,因为pnp遵循的是ACPI规范,是由于如下Hardware ID字段是需要从BIOS中进行描述的,而目前的驱动匹配不到对应的字段,自然就不可能注册成功了。 PNP是什么东西?不是三极管的那个PNP啦,这个PNP表示的是:Plug-and-Play,译文为即插即用。 PNP的作用是自动配置底层计算机中的板卡和其他设备,然后告诉对应设备都做了什么。PnP的任务是把物理设备和软件设备驱动程序相配合,并操作设备,在每个设备和它的驱动程序之间建立通信信道。然后,PnP分配下列资源给设备和硬件:I/O地址、IRQ、DMA通道和内存段。即插即用设备配置的控制权将从系统BIOS传递到系统软件,所以驱动中一定会有代码进行描述,到时可以跟一下这部分的代码深入了解一下。由于PNP遵循ACPI的规范,那么既然是规范,那肯定要照着做了,规范怎么说,那就怎么做。 以下是关于ACPI Spec中对Hardware ID的描述,描述如下:
在配置我们的 Red Hat Linux 服务器时,确保文件句柄的最大数量足够大是非常关键的。文件句柄设置表示您在 Linux 系统中可以打开的文件数量。
领取专属 10元无门槛券
手把手带您无忧上云