段是程序的组成元素。将整个程序分成一个一个段,并且给每个段起一个名字,然后在链接时就可以用这个名字来指示这些段,使得这些段排布在合适的位置。
先来分析一个简单的.lds链接脚本 例1,假如现在有head.c init.c nand.c main.c这4个文件: 1.1 首先创建链接脚本nand.lds: 1 SECTIONS { 2
例1,假如现在有head.c init.c nand.c main.c这4个文件:
在linux中输入vi Makefile 来实现创建Makefile文件 注意:命令行前必须加TAB键 例如:将两个文件led.c和crt0.S汇编文件,制作一个Makefile文件 1 1 led
在一次项目中, 需要进行嵌入式操作系统选型, 需求就是选择一款OS,既能满足当下项目的需要,又要考虑公司未来对物联网应用的扩展能力,对比了目前市面上流行的开源操作系统,诸如FreeRTOS,RTX,UCOS,RT-Thread,contiki等, 最终确定了一款IoT OS:RT-Thread(遵循 Apache License 2.0 开源许可协议)。事实证明,这款操作系统也为公司物联网产品设计提供了很大便利,这里介绍其中一个我认为非常有用的组件FinSH,也正是深刻体会到了FinSH在程序应用开发中的便利, 使我下定决心将其移植到Linux平台,为我在linux平台的项目添上一个炫酷的操作接口,在此对整个过程进行总结。
S3C2440的CPU可以直接给SDRAM发送命令、给Nor Flash发送命令、给4K的片上SDRAM发送命令,但是不能直接给Nand Flsh发送命令
led.bin : crt0.S led.c 指的是依赖关系,led.bin是目标文件,:后面是依赖文件
目前(2020.08.06)乐鑫在 master 分支对 ESP32-S2 提供最新支持,因此必须使用 master 版本的 ESP-IDF。
①运行地址,顾名思义就是程序运行的时候的地址,也就是你用工具将代码下载到RAM的那个地址,也叫加载地址。
每个目标文件都有好多个段,目标文件在被链接成可执行文件时,输入目标文件中的各个段如何被合并到输出文件?
XR806 是一颗高集成度无线应用MCU,其集成了ARMv8-M 内核、IEEE 802.11b/g/n Wi-Fi 子系统、BLE 5.0子系统、电源管理系统、高级别的安全系统以及丰富的外设接口,具有优秀的射频性能、稳定性、可靠性和超低功耗。
编译器将编写的C程序代码进行翻译,变成机器可以执行的程序,这个大致上可以分为四个步骤:预编译、编译、汇编、链接。
又开始不务正业乱开新坑了。接下来会通过阅读mold的源码来学习如何实现一个ELF链接器,有精力也会再跟着plct的这个课程学习实现一个简单的RV ELF链接器,可能会跟着将代码换一门语言翻译一遍,将这个学习过程中遇到的知识点记录到博客中。如果坑能开到后面的话我还会针对这门课程实现的链接器在功能上与mold的进行比较,一门教学用的链接器和真正实用的链接器在功能上有哪些差别。
本文介绍了编译器出错提示及解决方案。首先介绍了编译器出错提示,然后分析了出错原因,并提出了具体的解决方案。最后,文章还列举了几个常见的编译错误,并给出了相应的解决方法。
本系列参考: 学习开发一个RISC-V上的操作系统 - 汪辰 - 2021春 整理而来,主要作为xv6操作系统学习的一个前置基础。
https://sourceware.org/ml/binutils/2007-07/msg00154.html
在裸板2440中,当我们使用nand启动时,2440会自动将前4k字节复制到内部sram中,如下图所示: 然而此时的SDRAM、nandflash的控制时序等都还没初始化,所以我们就只能使用前0~40
相信很多在研究linux内核源码的同学,经常会发现一些模块的初始化函数找不到调用者,比如下面的网络模块的初始化函数:
每一个链接过程都由链接脚本(linkerscript, 一般以lds作为文件的后缀名)控制. 链接脚本主要用于规定如何把输入文件内的section放入输出文件内, 并控制输出文件内各部分在程序地址空间内的布局. 但你也可以用连接命令做一些其他事情. 连接器有个默认的内置连接脚本, 可用ld--verbose查看. 连接选项-r和-N可以影响默认的连接脚本(如何影响). -T选项用以指定自己的链接脚本, 它将代替默认的连接脚本。你也可以使用<暗含的连接脚本>以增加自定义的链接命令. 以下没有特殊说明,连接器指的是静态连接器.
本文主要介绍AM64x的Cortex-A53、Cortex-M4F和Cortex-R5F核心程序自启动使用说明。默认使用AM6442进行测试演示,AM6412测试步骤与之类似。
分散加载是一种实现特定代码快速启动的技术,通过优先加载特定代码到内存,达到缩短从系统开机到特定代码执行的时间。可被应用来实现关键业务的快速启动。
这里继续介绍arm裸机的编程,从点亮led灯开始,今天将会分别使用汇编和C语言来实现点亮led灯。里面涉及到的一些arm基础知识可以参考前面的文章arm(1)| 基础知识arm(2)| 汇编指令和伪指令
链接脚本中的LMA和VMA是什么意思。这个问题纠结了一段时间,今天在看《ARM体系结构与编程》时,豁然开朗,写下自己的认识。分享例如以下:
我们在学习和编写C程序时,都是从main函数开始,main函数作为入口函数已经深深地印在我们的脑海中,那么main函数真的是C程序的入口函数吗?带着这个问题我们先来看下面一段代码。 1. 实验程序 示例代码 #include <stdlib.h> #include <stdio.h> static void __attribute__ ((constructor)) beforeMain(void) { printf("Before main...\n"); } int main(void)
之前从网上下载了一份用GCC开发stm32的程序,也是用的stm32的库函数编程,启动文件是startup_stm32f10x_hd.s,链接脚本文件是从gcc_ride7中拷贝出的stm32f10x_flash_extsram.ld,做了些简单修改。但是编译了一下,出现了一大堆的错误。于是干脆不用这些文件,从网上查资料,自己写启动文件和链接脚本。仔细看了下startup_stm32f10x_hd.s,这个文件,发现也很简单,无非是定义了一些中断向量表和完成数据段的搬移和.bss段的清零等工作,并把程序跳转到main()函数。然后链接脚本文件告知链接器,把所有目标文件相应的段连接到一起,并把目标文件中的“变量地址”“函数地址”重定位至正确的地址空间; 编写前需要知道C程序编译后的典型内存布局 ,单片机的启动流程以及链接脚本文件的作用和编写等知识。部分知识,摘自网络。
本文主要分析了Linux内核编译过程中生成vmlinux文件的过程,包括编译、链接、初始化、配置、编译和打包等步骤。同时,本文还提供了相应的工具链、编译选项和编译规则,以方便开发人员更好地理解和掌握Linux内核编译的相关知识。
在去深入分析一款芯片的使用的时候,往往需要关注其启动的流程与底层初始化的代码。只有掌握了这些信息,做代码优化和裁剪才能游刃有余,在特定的环境下,以最佳的方式去使用好芯片。
本文总结了通过分析Linux内核编译过程,特别是vmlinux文件的生成过程,以及分析uImage和zImage的生成方式,深入了解了Linux内核编译的底层原理和过程,对于实际参与Linux内核开发和推广有很大帮助。
在中文嵌入式环境中,时不时的总能看到不少朋友”堆”“栈“傻傻分不清楚,我很早之前在文章《漫谈C变量——夏虫不可语冰》介绍过二者的区别,这里就不再深入展开,总之:
目标: (1)创建Source Insight 工程,方便后面分析如何启动内核的 (2)分析uboot传递参数,链接脚本如何进入stext的 (3) 分析stext函数如何启动内核: (3.1
其中 Allwinner 提供 DSP 核 SDK 源码包,IDE 工具和 Licence 需要向 Cadence 申请。Allwinner 不提供 IDE 工具和 Licence 的授权。
任何芯片在启动之前都需要有一段汇编代码,从这段汇编代码上就可以体现一些架构设计的特点。往往做嵌入式底层开发都需要关注这段汇编代码的含义,这样在使用的时候才能全面的了解启动时做了什么事情,在后续的程序中遇到问题也能复盘推演。
摘要总结:本文介绍了在U-Boot中,.globl和.balignl指令的作用,以及如何在U-Boot中通过这些指令来为内存做标记,以便在后续的链接过程中优化代码的性能。同时,本文还提供了一个实例,通过具体的代码示例,让读者更好地理解这些指令的使用方式和作用。
本文主要梳理riscv32在qemu的移植过程,将通过几天时间将其整理和最小系统的bring up。为了保证代码的可维护性,所有修改符合rt-thread bsp制作规范。目标就是riscv32 qemu 上运行rt-thread。以RT-Thread v4.0.3 released为工程代码的基线,进行开发移植工作。
此项目为 Hexo + replica 主题制作 依托于github 和 coding部署使用
前面的文章中已经提到了opensbi的作用不仅仅是一个引导作用,还提供了M模式转换到S模式的实现,同时在S-Mode下的内核可以通过这一层访问一些M-Mode的服务。
有些应用中,单板没有DDR,OCM又不够存储所有数据和指令。这种情况下,Xilinx提供了参考设计Zynq-7000 AP SoC Boot - Booting and Running Without External Memory,把代码和只读数据放在QSPI Flash中运行程序,这就是execute in place (XIP)。
随着linux的代码更新,阅读linux-4.15代码,从中发现很多与众不同的地方。之所以与众不同,就是因为和我之前从网上博客或者书籍中看到的内容有所差异。当然了,并不是为了表明书上或者博客的观点是错误的。而是因为linux代码更新的太快,网上的博客和书籍跟不上linux的步伐而已。究竟是哪些发生了差异了?例如:kernel image映射区域从原来的linear mapping region(线性映射区域)搬移到VMALLOC区域。因此,我希望通过本篇文章揭晓这些差异。当然,我相信不久的将来这篇文章也将会成为一段历史。
vmlinux 属于 ELF 文件,要想了解如何启动 vmlinux,首先需要知道 ELF 的格式。
由 Rust 中文社区 myrfy 来制作,其中也包含了一些非嵌入式领域需要懂的基础知识,比如链接脚本工作机制:
Fundamental, fundamental, fundamental, …without the fundamental, all those fancy magics won’t work.
想学习一样东西,最好先问个为什么要这样,这样学起来才有目标。上大学时,老师讲课总是告诉我们必须这样那样,很少讲这门课是干什么的,有什么意义,有什么用。有一次我问老师,为什么要傅里叶变换,学习它能用来做什么,老师先是很惊讶,然后耐心的给所有同学都讲了讲,老师讲完也很欣慰,笑着说因为很少有学生去问这样的问题。所以也只是讲课,没讲实际的应用和原理的东西。学生们听了也有兴趣了,学也认真了。
机器之心转载 作者:CJ Ting 最简单的 C 语言 Hello World 程序,底层到底发生了什么?如何编写出最小的 64 位 Hello World 程序? Hello World 应该是每一位程序员的启蒙程序,出自于 Brian Kernighan 和 Dennis Ritchie 的一代经典著作 The C Programming Language。 // hello.c#include <stdio.h>int main() { printf("hello, world\n"
R128 S2 是全志提供的一款 M33(ARM)+C906(RISCV-64)+HIFI5(Xtensa) 三核异构 SoC,同时芯片内部 SIP 有 1M SRAM、8M LSPSRAM、8M HSPSRAM 以及 16M NORFLASH。
大家好,今天我们来分享linux内核的工程建立以及一些我在工作当中使用source insight 经常会用的一些快捷操作;然后会分享一些有用的汇编指令,主要是经常会遇到的汇编指令,汇编指令没必要去专门学,当你在看启动汇编代码的时候,只要稍微看的懂它的意思就行,因为在上班中,你很少去写汇编,我们只是用它分析,体会一下linux内核是如何启动的。不过这其中可能很多人,对虚拟内存和页表等知识不是很清楚,没关系,这个不影响我们学习,这个我后面在文章中写到的。好了,那就开始今天的分享。
分析makefile从顶层开始,顺藤摸瓜的分析下去,会涉及到所有的makefile文件。各级子目下的makefile完成的动作obj -y += obj -m += make uImage时,uImage在arch/arm/makefile中,顶层makefile中一定包含了底层的makefile。
本周在给程序添加功能的时候,突然发现,我只是写了几个函数,还没调用,size就变大了。这肯定是不行的嘛,没用的函数就应该不链接进来,占用我宝贵的空间。
领取专属 10元无门槛券
手把手带您无忧上云