本文介绍了如何利用驱动开发技术实现一个字符设备,并利用操作结构体来处理不同的功能。通过调用驱动程序API,可以在用户空间程序中实现对字符设备的打开、关闭、读写等操作。同时,文章还介绍了一种简化注册过程的方法,利用宏定义可以快速实现设备节点的创建和注册。
上周末,智谱AI在2023中国计算机大会(CNCC)上推出了全自研的第三代基座大模型ChatGLM3,在各个任务上相比ChatGLM2都有了很大的提升。今天终于下载了模型部署测试,实际效果确实要比ChatGLM2要好。
要使用pinA来控制LED,首先要通过Pinctrl子系统把它设置为GPIO功能,然后才能设置它为输出引脚、设置它的输出值。
在linux设备驱动第一篇:设备驱动程序简介中简单介绍了字符驱动,本篇简单介绍如何写一个简单的字符设备驱动。本篇借鉴LDD中的源码,实现一个与硬件设备无关的字符设备驱动,仅仅操作从内核中分配的一些内存。 下面就开始学习如何写一个简单的字符设备驱动。首先我们来分解一下字符设备驱动都有那些结构或者方法组成,也就是说实现一个可以使用的字符设备驱动我们必须做些什么工作。 1、主设备号和次设备号 对于字符设备的访问是通过文件系统中的设备名称进行的。他们通常位于/dev目录下。如下: xxx@ubuntu:~$ ls
1.kali2.0镜像文件 - 下载地址:https://www.kali.org/downloads/
最近在搞IoT的时候,因为没有设备,模拟跑固件经常会缺/dev/xxx,所以我就开始想,我能不能自己写一个驱动,让固件能跑起来?因此,又给自己挖了一个很大坑,不管最后能不能达到我的初衷,能学到怎么开发Linux驱动,也算是有很大的收获了。
今年6月份清华大学发布了ChatGLM2,相比前一版本推理速度提升42%。最近,终于有时间部署测试看看了,部署过程中遇到了一些坑,也查了很多博文终于完成了。本文详细整理了ChatGLM2-6B的部署过程,同时也记录了该过程中遇到的一些坑和心得,希望能帮助大家快速部署测试。另外:作者已经把模型以及安装依赖全部整理好了,获取方式直接回复:「chatglm2-6b」
前面有篇文章使用杂项设备完成了按键驱动的编写,实现了按键轮询检测,通过read函数向应用层传递按键值,这篇文章使用按键为例,介绍Linux内核里中断的注册方法,使用中断的方式检测按键是否按下,中断在单片机、设备驱动开发里使用的都非常多,可以更加实时的检测到按键触发的情况。
本章的目的是编写一个完整的字符设备驱动,我们开发一个字符驱动是因为这一类适合大部分简单硬件设备,字符驱动也比块驱动易于理解。
此类驱动适合于大多数简单的硬件设备。比如并口打印机,我们通过在/dev下建立一个设备文件(如/dev/printer)来访问它。
USB的全称是Universal Serial Bus,通用串行总线。它的出现主要是为了简化个人计算机与外围设备的连接,增加易用性。USB支持热插拔,并且是即插即用的,另外,它还具有很强的可扩展性,传输速度也很快,这些特性使支持USB接口的电子设备更易用、更大众化。
在Linux系统中,设备通常通过主设备号和次设备号来标识。主设备号用于区分设备的大类,例如硬盘、字符设备等;次设备号用于在同一大类设备中区分不同的设备。以下是一些常见设备类型及其固定的主设备号:
问1. 既然还没有"驱动程序",为何能知道是"android phone" 答1. windows里已经有了USB的总线驱动程序,接入USB设备后,是"总线驱动程序"知道你是"android phone" 提示你安装的是"设备驱动程序" USB总线驱动程序负责:识别USB设备, 给USB设备找到对应的驱动程序
驱动程序为drivers\gpio\gpiolib-sysfs.c,这里不打算分析它。
平时调试GPIO的时候,往往是驱动写好控制接口,应用层操作,驱动配置端口->编译->烧录固件->查看现象,这样操作很繁琐,很浪费时间, 直接通过串口登录开发板,通过命令的方式控制端口,这样的方式既方便又快速.
也就是说,在应用程序中,可以通过open,write,read等函数来操作底层的驱动。
众所周知,Linux内核主要包括三种驱动模型,字符设备驱动,块设备驱动以及网络设备驱动。
这一部分主要是用来介绍 Linux 设备驱动程序的一些基本概念,包括:Linux 设备驱动程序的作用、内核功能的划分、设备和模块的分类以及版本编号。
A:设备号是用来标识设备的关键信息,主设备号用于标识设备的类型,次设备号用于区分同类型的不同设备。
Linux 的同步机制不断发展完善。从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁。这些同步机制的发展伴随Linux从单处理器到对称多处理器的过渡;
设备驱动程序是软件概念和硬件电路之间的一个抽象层,软件操作硬件的关键就是对寄存器的操作。笔者使用的S5PV210是IO与内存统一编址的,在裸机中直接操作IO端口的物理地址,而在驱动中必须使用虚拟地址。直接基于IO的虚拟地址用指针解引用的方式来读写有两种方式,静态映射和动态映射。除了可以直接将指针解引用的方式,内核中提供了专用的读写接口来读写寄存器。考虑到GPIO作为硬件资源,存在着被多个驱动使用,还有复用的问题,所以内核提供了GPIO驱动gpiolib框架来统一管控GPIO资源,gpiolib在内核中作为一个驱动所实现。
在Linux中,可以对GPIO进行相关的控制,具体的做法就是利用字符设备驱动程序对相关的gpio进行控制。由于操作系统的限制,在Linux上又无法直接在应用程序的层面上对底层的硬件进行操作。本文主要通过一个点亮红外灯的实例,再次理解Linux下的应用程序与驱动程序的交互,同时加深驱动程序编写流程的理解。
倒车影像已经是现在汽车的标配功能了,基本很多车出厂都是360全景影像,倒车影像又称泊车辅助系统,这篇文章就采用Linux开发板完成一个倒车影像的功能。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码。比如在ARM Linux内,一个.dts(device tree source)文件对应一个ARM的machine,一般放置在内核的"arch/arm/boot/dts/"目录内,比如exynos4412参考板的板级设备树文件就是"arch/arm/boot/dts/exynos4412-origen.dts"。这个文件可以通过$make dtbs命令编译成二进制的.dtb文件供内核驱动使用。
在Linux环境上使用SDX55模块时出现无法识别adb端口,但可以识别手机adb端口。
看上图,选择122号中断,它是SPI里的122号中断,GIC里的编号是(32+122)=154。
在linux中,每一个设备都有一个对应的主设备号和次设备号,linux在内核中使用dev_t持有设备编号,传统上dev_t为32位,12位为主设备号,20位为次设备号,主编号用来标识设备使用的驱动,也可以说是设备类型,次编号用来标识具体是那个设备,使用动态分配函数alloc_chrdev_region可以让内核自动为我们分配一个主设备号,同时在设备停止使用后,应当释放这些设备编号,释放设备编号的工作应该在卸载模块时完成,释放设备编号可以使用unregister_chrdev_region函数,分配和释放的部分如下:
又一个古老的Linux内核漏洞被曝光!这次的漏洞可以追溯到2009年,影响的linux发行版包括Red Hat、Debian、Fedora、OpenSUSE和Ubuntu。 这个Linux漏洞编号为CVE-2017-2636,根据CVSS v3标准漏洞评分为7.8分。漏洞在Linux内核已经存在7年了,它能够让本地无权限的用户获取root权限,或者发动DoS让系统崩溃。 Positive Technologies的研究员Alexander Popov发现了存在于N_HLDC linux内核驱动的竞争条件
本文档对内核的 GPIO 接口使用进行详细的阐述,让用户明确掌握 GPIO 配置、申请等操作的编程方法。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。
作为Linux发行版中的后起之秀,Ubuntu 在短短几年时间里便迅速成长为从Linux初学者到资深专家都十分青睐的发行版。由于Ubuntu 是开放源代码的自由软件,用户可以登录Ubuntu 的官方网址免费下载该软件的安装包。
在之前的文章中,驱动程序都是使用read()和write()来操作设备,但是大部分的驱动程序还需要另外一种能力,就是通过设备驱动程序执行各种类型的硬件控制。比如:用户控件经常会请求设备锁门、弹出介质、报告错误信息、改变波特率或执行破坏等操作。这些操作通常是通过ioctl方法来实现。
中断是大家用的最多的功能,不管是单片机还是 Linux 系统,都需要用到中断,对它的深入理解是非常必要的。
当我们拿到一块新的硬盘时,他所能够支持的最大空间只是代表硬件上的一个参数,我们要想让他能够正常的工作起来,必须要有相应的文件系统。文件系统决定了文件存储和管理时的方式和数据结构,也就是如何管理磁盘上的文件和文件夹。不同的文件系统拥有不同的特点,这也就是为什么我们在进行格式化操作必须要选定一种文件系统的原因。当在一个操作系统(Windows、Linux、MacOS)中使用文件系统时,通常都会做一个统一的接口,来进行文件的读写,所以会存在某些文件系统只适用与某一种操作系统的情况。
缓冲区作为一块内存区域,提供了一个临时存储数据的空间,帮助程序高效地处理输入和输出
当我们拿到一块新的硬盘时,他所能够支持的最大空间只是代表硬件上的一个参数,我们要想让他能够正常的工作起来,必须要有相应的文件系统。文件系统决定了文件存储和管理时的方式和数据结构,也就是如何管理磁盘上的文件和文件夹。不同的文件系统拥有不同的特点,这也就是为什么我们在进行格式化操作必须要选定一种文件系统的原因。 当在一个操作系统(Windows、Linux、MacOS)中使用文件系统时,通常都会做一个统一的接口,来进行文件的读写,所以会存在某些文件系统只适用与某一种操作系统的情况。
在Linux中,kill命令用于终止指定进程的运行,是常用的进程管理命令。通常情况下,可以通过Ctrl+C键终止前台进程,但对于后台进程,则需要使用kill命令来结束进程。在使用kill命令之前,需要使用ps、pidof、pstree或top等工具获取进程的PID,然后使用kill命令来终止该进程。
上次跟大家分享了设备模型的一些东西,包括总线、设备、驱动等的一些概念,还有他们之间的联系。今天要分享的是platform总线驱动,platform总线是总线的一种,这是相对于物理总线来说的,这是一种虚拟的总线。
除了读取和写入设备外,大部分驱动程序还需要另外一种能力,即通过设备驱动程序执行各种类型的硬件控制。比如弹出介质,改变波特率等等。这些操作通过ioctl方法支持,该方法实现了同名的系统调用。
UDC驱动的接口都定义在drivers/usb/gadget/udc/core.c文件中。USB Function驱动通过调用这些接口匹配及访问USB设备控制器,而底层USB控制器驱动要实现这些接口定义的功能。下面分析一下主要的UDC驱动接口调用流程。
关于Linux详细介绍可以参见:http://blog.csdn.net/hguisu/article/details/6122513 关于Linux的常用命令可以参见:http://blog.csdn.net/xiaoguaihai/article/details/8705992 【Linux】Linux中常用操作命令 1、Linux操作系统的安装 目前基本上都是基于windows操作系统上的安装,在安装在windows上搞得虚拟机上加载安装Linux系统,主要有CentOS(企业服务用这个比较多)
程磊,某手机大厂系统开发工程师,阅码场荣誉总编辑,最大的爱好是钻研Linux内核基本原理。
学习单片机的第一个例子通常都是点亮LED灯,对于Linux应用,我们也从LED入手,我就记得自己刚开始学的时候查了好多资料才勉强能控制一个灯亮,当时就感受到了Linux和单片机裸机有很大的差异。这里做个总结,希望对大家有所帮助。
V4L2:Video for Linux two,缩写 Video4Linux2,是 Linux 内核中的一个框架,提供了一套用于视频设备驱动程序开发的 API。
本文介绍了如何通过Linux内核和硬件平台驱动程序实现IO复用,并使用应用层程序对IO进行操作。首先介绍了Linux内核的IO模型和硬件平台,然后详细阐述了驱动程序如何实现IO复用,接着介绍了应用层程序如何调用驱动程序来实现IO操作。最后通过总结和展望对全文内容进行了梳理和概括。
工作队列常见的使用形式是配合中断使用,在中断的服务函数里无法调用会导致休眠的相关函数代码,有了工作队列机制以后,可以将需要执行的逻辑代码放在工作队列里执行,只需要在中断服务函数里触发即可,工作队列是允许被重新调度、睡眠。
领取专属 10元无门槛券
手把手带您无忧上云