核心: 1.每个元素的首地址偏移量必须能整除该元素的长度。 2. 整个结构体的长度必须能整除最长元素的字节数。
在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排列,而不是简单地顺序排列,这就是内存对齐。 内存对齐的原因: 1)某些平台只能在特定的地址处访问特定类型的数据; 2)提高存取数据的速度。比如有的平台每次都是从偶地址处读取数据,对
结构体字节对齐 在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何 变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排列, 而不是简单地顺序排列,这就是内存对齐。 计算结构变量的大小必须讨论数据对齐的问题。为了使CPU存取的速度最快(这同CPU取数操作有关),c++在处理数据时经常把结构变量中的成员的大小按照4或
这篇文章,按照下面这 2 张图,来描述 glib 在 Linux 和 Windows 平台上,是如何来进行线程库的设计的。
本节主要学习: 详细分析UBOOT中"bootcmd=nand read.jffs2 0x30007FC0 kernel;bootm 0x30007FC0" 中怎么实现bootm命令启动内核.
本文介绍了从裸机程序、操作系统和硬件抽象层三个方面分析Linux内核,并详细介绍了Linux内核的初始化过程、进程管理、内存管理、设备驱动、中断处理、性能优化等方面的知识。
今天给大家分享网友面试的实战linux面试题目,自己可以把它看成自己的面试,如果是你在面对面试官,是否能够说出这些题目的理解和答案:
内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
Linux 上可用的 C 编译器是 GNU C 编译器,它建立在自由软件基金会的编程许可证的基础上,因此可以自由发布。GNU C对标准C进行一系列扩展,以增强标准C的功能。
今天跟大家分享一首华晨宇的《我管你》,个人觉得这首歌表达了一种年轻人的热血感,每次听都让自己非常来劲。最近工作挺忙的,写文章或许已经成为了一种兴趣和爱好了吧,也希望每次作者的唠叨都能带给各位小伙伴一些小小的收获。
CGO 是 GO 语言里面的一个特性,CGO 属于 GOLANG 的高级用法,主要是通过使用 GOLANG 调用 CLANG 实现的程序库
container_of可以说是内核中使用最为频繁的一个函数了,简单来说,它的主要作用就是根据我们结构体中的已知的成员变量的地址,来寻求该结构体的首地址,直接看图,更容易理解。
回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。
Linux内核下的 drivers/input/keyboard/gpio_keys.c实现了一个体系结构无关的GPIO按键驱动,使用此按键驱动,只需在设备树gpio-key节点添加需要的按键子节点即可。驱动的实现非常简单,但是较适合于实现独立式按键驱动。
在Rust的源代码中,rust/compiler/rustc_target/src/spec/mod.rs文件的作用是定义和实现有关目标平台的规范。
list_entry()有着内核第一宏的美称,它被设计用来通过结构体成员的指针来返回结构体的指针。现在就让我们通过一步步的分析,来揭开它的神秘面纱,感受内核第一宏设计的精妙之处。
杂项设备(misc device)也是在嵌入式系统中用得比较多的一种设备驱动。
开发过单片机的小伙伴可以看一下我之前的一篇文章从单片机开发到linux内核驱动,以浅显易懂的方式带你敲开Linux驱动开发的大门。
学习 I2C 和 SPI 驱动的时候,针对 I2C 和 SPI 设备寄存器的操作都是通过相关的 API 函数进行操作的。这样 Linux 内核中就会充斥着大量的重复、冗余代码,但是这些本质上都是对寄存器的操作,所以为了方便内核开发人员统一访问 I2C/SPI 设备的时候,为此引入了 Regmap 子系统。
I2C总线对应着/bus下的一条总线,这个i2c总线结构体管理着i2c设备与I2C驱动的匹配,删除等操作,I2C总线会调用i2c_device_match函数看I2C设备和I2C驱动是否匹配,如果匹配就调用i2c_device_probe函数,进而调用I2C驱动的probe函数。
该文章介绍了Nor Flash的基本原理、基本操作以及驱动程序的基本使用。它还提供了在用户空间中驱动Nor Flash设备的示例代码。文章还讨论了如何使用MTD设备来模拟Nor Flash,并展示了如何编写简单的用户空间应用程序来与Nor Flash进行通信。
函数功能:用来获取linux操作系统下文件的属性。 函数原型: int stat(const char *pathname,struct stat *buf);
上一篇分享的:从单片机工程师的角度看嵌入式Linux中有简单提到Linux的三大类驱动:
结构,联合,枚举C++结构体C++联合C++枚举bool类型内联重载缺省参数和哑元哑元引用引用特点引用做参数引用做函数返回值
首先,先提一下Namespace是什么。最早知道这个名词是在学习C++语言的时候。由于现在的系统越来越复杂,代码中不同的模块就可能使用相同变量,于是就出现了Namespace,来对全局作用域进行划分。
在Linux内核中使用了大量的链表结构来组织数据,包括设备列表以及各种功能模块中的数据组织。这些链表大多采用在include/linux/list.h实现的一个相当精彩的链表数据结构。
在上一节LCD层次分析中,得出写个LCD驱动入口函数,需要以下4步: 1) 分配一个fb_info结构体: framebuffer_alloc(); 2) 设置fb_info 3) 设置硬件相关的操作
在Linux内核中,对于数据的管理,提供了2种类型的双向链表:一种是使用list_head结构体构成的环形双向链表;另一种是使用hlist_head和hlist_node2个结构体构成的具有表头的链型双向链表。
总结 : JNI 中定义的函数指针 , 实际都定义在 JNINativeInterface 结构体中 ;
前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识。然而SVM最核心的地方应该在于核函数和求关于α函数的极值的方法:SMO算法(当然还有很多别的算法。libsvm使用的是SMO,SMO算法也是最高效和简单的),还有松弛变量。。毕设答辩在即,这两个难点只能拖到后面慢慢去研究了。
内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。部分层次结构如图1-1所示。
Linux系统一般有4个主要部分: 内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。部分层次结构如图1-1所
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。
内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。部分层次结构如图所示。
C 语言是一门面向过程的编程语言,通过一个又一个函数,把计算、过程控制等逻辑,包装成一个个独立的处理单元。
I2C设备驱动是I2C框架中最接近应用层的,其上接应用层,下接I2C核心。也是驱动开发人员需要实现的代码,在此驱动中我们只需负责以下步骤(以ap3216c为例):
rust/compiler/rustc_target/src/spec/mipsel_unknown_linux_uclibc.rs文件的作用是定义了Rust编译器的MIPS小端架构的目标描述符(target descriptor)和特定于该目标的特性和配置。
在开发板上如果想要显示jpeg格式的图片,必须用到libjpeg库,不可能自己去编写jpg的解码代码。
本文通过在荔枝派上实现一个 hello 驱动程序,其目的是深入的了解加载驱动程序的运作过程。
1.本节使用的nand flash型号为K9F2G08U0M,它的命令如下: 1.1我们以上图的read id(读ID)为例,它的时序图如下: 首先需要使能CE片选 1)使能CLE 2)发送0X90命
首先感谢各位对《C++那些事》的持续关注,也感谢各大公众号的推荐!也欢迎大家积极推荐本项目,让更多人从中学习并提出一些问题来,不断完善项目,《C++那些事》这两天霸榜github trending C++,下图可见:
一、BMP图片顺时针180°镜像 1.1 原图片 image.png 1.2 编译运行过程 [wbyq@wbyq linux_c]$ gcc app.c [wbyq@wbyq linux_c]$ ls 1.bmp 1.c 2.c 666.bmp 888.bmp a.out app.c test.c [wbyq@wbyq linux_c]$ ./a.out 传入的参数格式: ./a.out <原图片的名称> <新图片的名称> [wbyq@wbyq linux_c]$ ./a.out 888
题图来自 My second impression of Rust and why I think it's a great general-purpose language![1]
__init__宏:被修饰的函数会被链接器链接放入.init.text段中(本来默认情况下函数是被放入.text段中)。对内核而言是一种暗示,表示该函数仅在初始化期间使用,内核启动时统一会加载.init.text段中的这些模块安装函数,加载完后就会把这个段给释放掉以节省内存。 __exit__宏:被修饰的函数仅用于模块卸载,链接器会将其放入特殊的ELF段。如果模块被直接内嵌到内核中,或内核的配置不允许卸载模块,则被修饰的函数将被简单的丢弃。 prink函数:模块在被加载到内核后,它能调用的函数仅仅是由内核导出的那些函数。KERN_INFO是printk的打印级别,其实只是一个字符串(如<1>)。操作系统的命令行中也会有一个打印级别的设置(值为0-7),当前操作系统中执行printk的时候会去对比printk中的打印级别和操作系统命令行中设置的打印级别,小于命令行设置级别的信息会被打印出来,大于的会被拦截。 module_init宏:该宏声明的函数会在模块被装载到内核中调用。 module_exit宏:该宏声明的函数会在模块被卸载时调用。 MODULE_LICENSE宏:指定该代码所使用的许可证协议。 MODULE_AUTHOR:描述模块作者。
在Rust源代码的rust/compiler/rustc_target/src/asm/spirv.rs文件中,实现了对SPIR-V(Standard Portable Intermediate Representation for Vulkan)汇编语言的支持。
如果觉得文章对你有帮助,点赞、收藏、关注、评论,一键四连支持,你的支持就是江哥持续更新的动力
领取专属 10元无门槛券
手把手带您无忧上云