CPU使用率指的是程序在运行期间实时占用的CPU百分比,这是对一个时间段内CPU使用状况的统计。
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
系统负载:在Linux系统中表示,一段时间内正在执行进程数和CPU运行队列中就绪等待进程数,以及非常重要的休眠但不可中断的进程数的平均值(具体load值的计算方式,有兴趣可以自行深究,这里不深究)。说白了就是,系统负载与R(Linux系统之进程状态)和D(Linux系统之进程状态)状态的进程有关,这两个状态的进程越多,负载越高。
在文章中,我们提到了 Linux 用来管理和限制 Linux 进程组资源使用的 CGroup 机制。本文我们就来详细介绍一下。
来源 | https://juejin.cn/post/6948034657321484318
(ps:对于如何在Intel CPU,ARM架构CPU,以及Jetson TensorRT上部署深度学习模型,以及部署遇到的速度问题,该如何解决。请查看我的另外一篇文章。如何定制化编译Pytorch,TensorFlow,使得CNN模型在CPU,GPU,ARM架构和X86架构,都能快速运行,需要对每一个平台,有针对性的调整。如何做到最大化加速深度学习在不同平台部署性能。请看我的这篇文章。)
记得博主以前被问到 CPU 负载如何才算高的时候,出过一次糗,具体就不记录了。。。在网上找了一篇比较详细的 Linux 下的 CPU 负载算法教程,科普一下。不感兴趣,或看不懂的朋友无视即可,不必浪费时间哈。 ---- 昨天查看 Nagios 警报信息,发现其中一台服务器 CPU 负载过重,机器为 CentOS 系统。信息如下: 2011-2-15 (星期二) 17:50 WARNING - load average: 9.73, 10.67, 10.49 还有前两个小时发出的警报信息: 2011-2
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过 oliver.yang at linux.alibaba.com 反馈。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 ** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
Android用户几乎每时每刻都在和显示交互;因此,良好的显示性能对于用户体验至关重要。然而,实现平滑如丝的性能并不总是那么容易。需要整个系统协同工作,并且内核并不总是像人们所希望的那样支持这种协作。Android小组目前正在考虑现有内核功能的多种组合以及可能的改进,以提供最佳的显示体验。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
说真的,这就是《我想进大厂》系列第八篇,但是Linux的问题确实很少,就这样,强行编几个没有营养的问题也没啥意义。
在前面的文章中介绍过使用w命令或uptime命令来查看Linux系统的平均负载(Load avaerage),那么平均负载处于什么状态算是正常呢?如果要根据平均负载来判断系统的稳定性,又该如何界定?先来看一下基础知识。
Linux内核的DL调度器是一个全局EDF调度器,它主要针对有deadline限制的sporadic任务。注意:这些术语已经在本系列文章的第一部分中说明了,这里不再赘述。在这本文中,我们将一起来看看Linux DL调度器的细节以及如何使用它。另外,本文对应的英文原文是https://lwn.net/Articles/743946/,感谢lwn和Daniel Bristot de Oliveira的分享。
在linux系统环境的测试开发过程中,我们常常需要评估系统性能,尤其在性能测试工作中,我们需要通过系统资源的监控,从而分析定位系统的性能瓶颈。
李盖,容器产品中心后台开发,负责腾讯云 TKE 的对内自研上云业务,主要负责集群调度、资源效率提升、集群稳定性等方向。 引言 在 K8s 集群运营过程中,常常会被节点 CPU 和内存的高使用率所困扰,既影响了节点上 Pod 的稳定运行,也会增加节点故障的几率。为了应对集群节点高负载的问题,平衡各个节点之间的资源使用率,应该基于节点的实际资源利用率监控信息,从以下两个策略入手: 在 Pod 调度阶段,应当优先将 Pod 调度到资源利用率低的节点上运行,不调度到资源利用率已经很高的节点上 在监控到节点资源率较
作为数据科学、机器学习的工具,Linux有着非常广泛的应用场景。其完全开放、高度可定制化的属性,使得用户可以用非常低的成本搭建所需的工作环境,同时安装依赖的时候也非常方便,直接一条命令就安装好了。
作者 | Lasse Vilhelmsen 译者 | 刘雅梦 策划 | 李冬梅 文描述了一个自动化的 CPU 垂直扩展系统的实现,在该系统中,优步(Uber)上运行的每个存储工作负载都被分配到了理想数目的内核。如今,该框架已被用于调整超过 50 万个 Docker 容器,自其建立以来,已净减少了超过 12 万个内核的分配,从而每年节省了数百万美元的基础设施支出。 在优步(Uber),我们在容器化环境中运行所有的存储工作负载,如 Docstore、 Schemaless、M3、MySQL、Cass
cpu scheduler负责调度两种资源:线程和中断 按优先级从高到低: 1)中断:设备告诉内核它们已经处理完成:如网卡发送完成了一个packet或是硬盘完成了一个io请求。 2)内核进程: 3)用户进程: ## 1. context switches:上下文切换 大多数的处理器在同一时刻只能运行一个进程,在多核处理器中,linux内核将每一个core当作一个独立的处理器。 一个内核可以同时运行50~50000个进程。如果只有一个c
微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
内存量,缓存大小,读取和写入磁盘的速度以及处理能力的速度和可用性都是影响基础架构性能的关键因素。在本教程中,我们将重点介绍CPU监控概念以及警报策略。我们将介绍如何使用两个常见的Linux实用程序,uptime命令和top命令了解CPU负载和利用率,以及如何设置腾讯云警报策略以通知您有关CVM CPU的高负载情况。
当前,各大公司都存在着线下集群利用率不高的问题,且在尝试进行多业务类型的混合部署后,还可能会遇到各种稳定性和业务质量方面的挑战。因此,贝联珠贯在大数据领域针对万台规模的集群展开了研究,并成功落地了一种基于增强型 RunC 的新方案,在第一阶段的 4 个月里,成功地帮助客户提升了资源利用率,年度降本超过千万人民币,同时业务使用体验并未受到影响。在今年 9 月份的 QCon 全球软件开发大会(北京站),贝联珠贯 (www.lccomputing.com) 合伙人王元良老师以《增强型 RunC 的最佳实践:克服离线高压力混部场景的关键挑战》为题,分享了实际落地经验。本文由贝联珠贯公众号(ID:Lccomputing)整理节选自此次演讲。 完整幻灯片下载地址: https://qcon.infoq.cn/202309/beijing/presentation/5440
时间片即CPU分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片,即该进程允许运行的时间,使各个程序从表面上看是同时进行的。如果在时 间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。而不会造成CPU资源浪费。在 宏观上:我们可以同时打开多个应用程序,每个程序并行不悖,同时运行。但在微观上:由于只有一个CPU,一次只能处理程序要求的一部分,如何处理公平,一 种方法就是引入时间片,每个程序轮流执行。 分时操作系统是把CPU的时间划分
1月9日,腾讯云宣布将开源其服务器操作系统TencentOS内核。相比业内其它版本Linux 内核,腾讯云 TencentOS 内核在资源调度弹性、容器支持、系统性能及安全等层面极具竞争力,特别适合云环境。该系统的开源及应用可帮助客户大幅提升云上资源的利用效率,降低运营成本,同时获得更加安全可靠的业务运行环境。 TencentOS是腾讯云操作系统系列产品,由腾讯云架构平台部主力研发,覆盖数据中心、桌面系统、边缘设备和物联网终端等应用场景,提供可靠的云平台构建、接入和应用能力,帮助客户转化云的价值。Te
1月9日,腾讯云宣布将开源其服务器操作系统TencentOS内核。相比业内其它版本Linux 内核,腾讯云 TencentOS 内核在资源调度弹性、容器支持、系统性能及安全等层面极具竞争力,特别适合云环境。该系统的开源及应用可帮助客户大幅提升云上资源的利用效率,降低运营成本,同时获得更加安全可靠的业务运行环境。
SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。
线程池设置多大,并没有固定答案, 需要结合实际情况不断的测试才能得出最准确的数据.
现如今企业的数据查询需求在不断增多,在共享同一集群时,往往需要同时面对多个业务线或多种分析负载的并发查询。在有限的资源条件下,查询任务间的资源抢占将导致性能下降甚至集群不稳定,因此负载管理的重要性不言而喻。
当我们使用top命令查看系统的资源使用情况时会看到load average,如下图所示,它表示系统在1,5,15分钟的平均工作负载。 那么什么是负载(load)呢?它和CPU的利用率又有什么关系呢
一、背景 互联网产业拥抱AI成为了当下的热潮:无人驾驶、医疗AI和智能推荐从实验室走出,融入到工程实业中;腾讯自主研发的王者荣耀等游戏AI给人们带去了快乐,“绝艺”更是获得了UEC杯冠军;而AI和海量计算力分不开,绝艺每天的盘数计算量都在亿级,王者每天计算结果均在百T,这些业务源源不断的计算力均来自腾讯架平TCS-弹性计算平台。该平台是根置于架平存储设备搭建而成,建设中最突出的问题是如何发现并调度异常计算点,本文从cpi的角度来介绍弹性平台的解决之道。 二、CPI 弹性平台中的设备都是在线业务与计算业务混部
本文介绍了如何监控调度异常点,通过弹性计算平台实现异常点检测、业务建模、调度、冲突检测、跨机调度等功能。
top是linux程序员经常使用的分析机器运行状态的工具。但是并不是所有人都能清楚如何使用该工具对程序占用CPU资源的情况进行分析,比如图中us、sy、ni、id、wa和si等各是什么意思?高低都能说明什么问题?本文将抛砖引玉,讲解下该工具的使用。
在 Linux 下我们通过 top 或者 htop 命令可以看到当前的 CPU 资源利用率,另外在一些监控工具中你可能也遇见过,那么它是如何计算的呢?在 Nodejs 中我们该如何实现?
在 Linux shell 上执行 top 命令,可以看到这样一行 CPU 利用率的数据:
TencentOS发展历经多年,从2010年开始真正自研,经历三个时期和三个大版本,目前已达到千万级节点,今年正式开启商业化。在技术层面已形成完整生态链,从上游版本到企业级商用版本,再到社区开放版本。当前主要版本是TencentOS Server3(缩写TS3),并服务至2029年。全自研版本TS4预计在2024年跟大家见面。
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
在 K8s 集群治理过程中,常常会因 CPU 、内存等高使用率状况而形成热点,既影响了当前节点上 Pod 的稳定运行,也会导致节点发生故障的几率的激增。
当我们系统有问题的时候,不要急于去调查我们代码 首先要看的是操作系统的报告,看看操作系统的CPU利用率,看看内存使用率,看看操作系统的IO,还有网络的IO,网络链接数,等等 Windows下的perfmon是一个很不错的工具,Linux下也有很多相关的命令和工具,比如:SystemTap,LatencyTOP,vmstat,sar,iostat,top,tcpdump等等 通过观察这些数据,就可以知道性能问题基本上出在哪里 (1)先看CPU利用率,如果CPU利用率不高,但是系统的吞吐量和系统延迟指标上不去,
来观察显卡的GPU内存占用率(Memory-Usage),显卡的GPU利用率(GPU-util),然后采用top来查看CPU的线程数(PID数)和利用率(%CPU)
CPU 利用率,又称 CPU 使用率。顾名思义,CPU 利用率用于描述 CPU 的运行情况,反映了一段时间内 CPU 被程序占用的情况。使用率越高,表示计算机在该时间段内运行了更多的程序,反之则较少。CPU 的利用率与其性能直接相关。
蒋彪,腾讯云高级工程师,10+年专注于操作系统相关技术,Linux内核资深发烧友。目前负责腾讯云原生OS的研发,以及OS/虚拟化的性能优化工作。 导语 混部,通常指在离线混部(也有离在线混部之说),意指通过将在线业务(通常为延迟敏感型高优先级任务)和离线任务(通常为 CPU 消耗型低优先级任务)同时混合部署在同一个节点上,以期提升节点的资源利用率。其中的关键难点在于底层资源隔离技术,严重依赖于 OS 内核,而现有的原生 Linux kernel 提供的资源隔离能力在面对混部需求时,再次显得有些捉襟见肘(
原文:https://blog.csdn.net/u010521062/article/details/115908166
英文版的电子版书籍可以去libgen找找,这里就不放了,如果可以的话还是建议入正,毕竟……可以炫富(并不是)。
原文https://blog.csdn.net/u010521062/article/details/115908166
领取专属 10元无门槛券
手把手带您无忧上云