经常看到一些博客在讲 Linux 内存的 PAGE SIZE 时,都会提到 Linux 默认页大小是 4KB。
在我们进行数据持久化,对文件内容进行落盘处理时,我们时常会使用fsync操作,该操作会将文件关联的脏页(dirty page)数据(实际文件内容及元数据信息)一同写回磁盘。这里提到的脏页(dirty page)即为页缓存(page cache)。
[注: 转载自今日头条号"闪念基因"] 在我们进行数据持久化,对文件内容进行落盘处理时,我们时常会使用fsync操作,该操作会将文件关联的脏页(dirty page)数据(实际文件内容及元数据信息)一同写回磁盘。这里提到的脏页(dirty page)即为页缓存(page cache)。
在 Linux 内核中 , MMU 内存管理单元 , 主要作用是 将 " 虚拟地址 " 映射到 真实的 " 物理地址 " 中 ,
前言: 前文《内存映射技术分析》描述了虚拟内存的管理、内存映射;《物理内存管理》介绍了物理内存管理。 本篇介绍一下内存回收。内存回收应该是整个Linux的内存管理上最难理解的部分了。 分析: 1,PFRA Page Frame Reclaim Algorithm,Linux的内存回收算法。 不过,PFRA和常规的算法不同。比如说冒泡排序或者快速排序具有固定的时间复杂度和空间复杂度,代码怎么写都差不多。而PFRA则不然,它不是一个具体的算法,而是一个策略---什么样的情况下需要做内存回收,什么样的page
前言: Memory Balloon作为虚拟化平台上的一个重要内存QoS方案,作者在前文《[linux][memory]balloon技术分析 》中做过原理性的简要分析。 本篇介绍Memory Balloon的两种性能优化方案,进一步提升内存QoS性能。 第一种方案:在guest的balloon中填充page,再通知qemu使用madvise让host主动释放page。 第二种方案:在guest的balloon中填充page的同时,把page置零。提升host的ksm/uksm的合并效率。 分析: 1,
前言: 先来回顾一下Linux平台上的节约内存的方案: swap:通过LRU淘汰掉掉一部分page,把这些page交换到磁盘上。再次访问到这些page的时候,kernel再把它们从磁盘load进内存中。 zram:内存压缩技术。通过压缩lzo算法把页面压缩,也可以节省一部分内存。作者第一次知道zram是在Android中见到的,因为一般的手机使用的emmc flash,是有读写寿命的(作者看到过一份实验数据,某厂家的emmc在连续写入数据三天后,emmc就已经挂了),不能打开swap(因为swap会增加大量
在 【Linux 内核 内存管理】物理分配页 ② ( __alloc_pages_nodemask 函数参数分析 | __alloc_pages_nodemask 函数分配物理页流程 ) 博客中 , 分析了 __alloc_pages_nodemask 函数分配物理页流程如下 :
大家好,我是 Peter,昨天群里有小伙伴咨询page cache的问题,看到网上有篇不错的文章,分享给大家。如果大家有想看的内容,欢迎给我留言。
页分配器 提供了 释放 物理页的 函数 __free_pages , 该函数定义在 Linux 内核源码的 linux-4.12\mm\page_alloc.c#4083 位置 ;
大概就是,进程写文件(使用缓冲 IO)过程中,写一半的时候,进程发生了崩溃,会丢失数据吗?
Linux 内核中 , " 分区伙伴分配器 " 有多种 物理页分配函数 , 所有的 函数 都会调用 __alloc_pages_nodemask 函数 , 该函数是 物理页分配 的 核心函数 ;
前言: 书接上回《内存映射技术分析》,继续来分析一下linux的物理内存管理。 分析: 1,物理内存 PC上的内存条,或者手机上的内存芯片,物理上实实在在的内存,就是物理内存。大小是硬件决定的,一般就是一个起始地址,加上大小。地址如何分配呢?PC上作者也不太懂,听闻BIOS可以配置。在ARM上,作者曾经看过一份电路图,当时的图上,使用32bit的高2bit作为chip select,后面的30bit作为地址总线,看过chip select信号之后,作者才明白为什么在代码上要配置起始的地址不是0,因为硬件
HugePage,就是指的大页内存管理方式。与传统的4kb的普通页管理方式相比,HugePage为管理大内存(8GB以上)更为高效。本文描述了什么是HugePage,以及HugePage的一些特性。
Linux 内核中 , 内存节点 ( Node ) 是 " 内存管理 " 的 最顶层的结构 , 下层分别是 区域 和 页 ;
如图,当我们查看内存信息时,通常会使用vmstat或free命令。在使用vmstat -S M时,会看到下面的结果。
到目前为止,内存管理是unix内核中最复杂的活动。我们简单介绍一下内存管理,并通过实例说明如何在内核态获得内存。
本文基于 Linux-2.4.16 内核版本 由于计算机的物理内存是有限的, 而进程对内存的使用是不确定的, 所以物理内存总有用完的可能性. 那么当系统的物理内存不足时, Linux内核使用什么方案来
Previously we looked at how the kernel manages virtual memory for a user process, but files and I/O were left out. This post covers the important and often misunderstood relationship between files and memory and its consequences for performance.
分页单元可以实现把线性地址转换为物理地址, 为了效率起见, 线性地址被分为固定长度为单位的组, 称为”页”, 页内部的线性地址被映射到连续的物理地址. 这样内核可以指定一个页的物理地址和其存储权限, 而不用指定页所包含的全部线性地址的存储权限.
本文从操作系统的角度来解释BIO,NIO,AIO的概念,含义和背后的那些事。本文主要分为3篇。 第一篇 讲解BIO和NIO以及IO多路复用 第二篇 讲解磁盘IO和AIO 第三篇 讲解在这些机制上的一些应用的实现方式,比如nginx,nodejs,Java NIO等 磁盘IO 磁盘IO,简单来说就是读取硬盘一类设备的IO。这类设备包括传统的磁盘、SSD、闪存、CD等。操作系统将其统一抽象为”块设备“。所以磁盘IO又可以叫做”块IO“。这些设备上的数据一般用文件系统来组织,所以又可以成为”文件IO“。本文统
我们知道文件一般存放在硬盘(机械硬盘或固态硬盘)中,CPU 并不能直接访问硬盘中的数据,而是需要先将硬盘中的数据读入到内存中,然后才能被 CPU 访问。
1. Linux物理内存三级架构 对于内存管理,Linux采用了与具体体系架构不相关的设计模型,实现了良好的可伸缩性。它主要由内存节点node、内存区域zone和物理页框page三级架构组成。
在Linux系统中,我们经常用free命令来查看系统内存的使用状态。在一个RHEL6的系统上,free命令的显示内容大概是这样一个状态:
常用 free free -k # 以KB为单位 free -m # 以MB为单位 free -g # 以GB为单位 free -h # 人类可读 输出 total used free shared buffers cached Mem 3856200 3321044 535156 251096 232084 1406376 -/+ buffers/cache 1682584 2173616 Swap 3999740 482480 3517260 total
磁盘IO,简单来说就是读取硬盘一类设备的IO。这类设备包括传统的磁盘、SSD、闪存、CD等。操作系统将其统一抽象为”块设备“。所以磁盘IO又可以叫做”块IO“。这些设备上的数据一般用文件系统来组织,所以又可以成为”文件IO“。本文统一用”磁盘IO“这个术语。
http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html
inux processes are implemented in the kernel as instances of task_struct, the process descriptor. The mm field in task_struct points to the memory descriptor, mm_struct, which is an executive summary of a program's memory. It stores the start and end of memory segments as shown above, the number of physical memory pages used by the process (rss stands for Resident Set Size), the amount of virtual address space used, and other tidbits. Within the memory descriptor we also find the two work horses for managing program memory: the set of virtual memory areas and the page tables. Gonzo's memory areas are shown below:
对 Linux 稍有了解的人都知道,Linux 会将物理的随机读取内存(Random Access Memory、RAM)按页分割成 4KB 大小的内存块,而今天要介绍的 Swapping 机制就与内存息息相关,它是操作系统将物理内存页中的内容拷贝到硬盘上交换空间(Swap Space)以释放内存的过程,物理内存和硬盘上的交换分区组成了操作系统上可用的虚拟内存,而这些交换空间都是系统管理员预先配置好的[^1]。
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。 文章比较长,做好准备,深呼吸,让我们一起打开Lin
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。
伙伴系统是常用的内存分配算法,linux内核的底层页分配算法就是伙伴系统,伙伴系统的优点就是分配和回收速度快,减少外部碎片。算法描述:
与硬件相关的代码全部放在 arch(architecture 一词的缩写,即体系结构相关)目录下。
前言: 我大天朝人觉得什么东西含量不够,叫做有“水份”。内存的含量不足,叫“balloon”。作者是外语专业毕业的,感觉不同国度的人虽然语言不同,但是表达出来的东西很相似。有点意思~ 代码分析: 代码路径:linux-4.0.4/drivers/virtio/virtio_balloon.c 1,Linux的memory balloon的实现上,MODULE_DESCRIPTION是“Virtio balloon driver”,以及driver注册的逻辑中,都会提到virtio。简单来说,virtio是虚
网上已经有很多关于Linux内核内存管理的分析和介绍了,但是不影响我再写一篇:一方面是作为其他文章的补充,另一方面则是自己学习的记录、总结和沉淀。
内核文档Documentation/arm64/memory.rst描述了ARM64 Linux内核空间的内存映射情况,应该是此方面最权威文档。
前言: 前文《[linux][redis]bgsave引起的latency突刺问题分析》分析了redis-server执行bgsave因为fork引起的latency突刺问题。 而在http://antirez.com/news/84中也提到了“However this is definitely not the full story”,剩下的story则是Linux的THP对redis的影响。 分析: 1,THP vs Normal page 配置了THP策略分别是always和never,redis-server和redis-benchmark配置相同的参数,执行bgsave的latency对比:
长时间运行的Linux服务器,通常 free 的内存越来越少,让人觉得 Linux 特别能“吃”内存,甚至有人专门做了个网站 LinuxAteMyRam.com解释这个现象。实际上 Linux 内核会尽可能的对访问过的文件进行缓存,来弥补磁盘和内存之间巨大的延迟差距。缓存文件内容的内存就是 Page Cache。
Linux有Linux kernal,我们的客户端,进行连接,首先到达的是Linux kernal,在Linux的早期版本,只有read和write进行文件读写。我们使用一个线程/进程 进行调用read和write函数,那么将会返回一个文件描述符fd(file description)。我们开启线程/进程去调用read进行读取。因为socket在这个时期是blocking(阻塞的),遇到高并发,就会阻塞,也就是bio时期。
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
我们接着看linux初始化内存的下半部分,等内存初始化后就可以进入真正的内存管理了,初始化我总结了一下,大体分为三步:
本文转载自https://0xffffff.org/2017/05/01/41-linux-io/
在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法.
模块在加载时,会调用module_alloc()来申请一块内存来存放模块的内容,需要的大小如下:
先讲一个作者大约5-6年前我在某当时很火的一个应用分发创业公司的面试小插曲,该公司安排了一个刚工作1年多的一个同学来面我,聊到我们项目中的配置文件里写的一个开关,这位同学就跳出来说,你这个读文件啦,每个用户请求来了还得多一次的磁盘IO,性能肯定差。借由这个故事其实我发现了一个问题,虽然我们中的大部分人都是计算机科班出身,代码也写的很遛。但是在一些看似司空见惯的问题上,我们中的绝大多数人并没有真正理解,或者理解的不够透彻。
VFS是虚拟文件系统层(进程与文件系统之间的抽象层),与它相关的数据结构只存在于物理内存当中。其目的是屏蔽下层具体文件系统操作的差异,为上层的操作提供一个统一接口,正是由于VFS的存在,Linux中允许多个不同的文件系统共存。
领取专属 10元无门槛券
手把手带您无忧上云