Linux 3.8 合并窗口接受了 Eric Biederman 的大量用户命名空间及相关的补丁。尽管仍有一些细节待完成,例如,许多 Linux 文件系统还不知道用户命名空间,但用户命名空间的实现已经在功能上完成了。
Go 语言中的 syscall 库用于提供程序与操作系统间的接口,使得程序能够执行系统调用。不同的操作系统具有不同的系统调用接口和机制,这导致 syscall 库在 Linux 和 Windows 系统上的表现和用法存在显著差异。以下是这两个平台之间的主要差异:
接着前两篇命名空间文章,现在看一下 PID 命名空间。与 PID 命名空间相关的全局资源就是进程 ID 数字空间。这意味着在不同 PID 命名空间中的进程可以有相同的进程 ID。PID 命名空间实现的容器可在主机之间迁移,并保持容器内的进程 ID 不变。
英文:Julia Evans,编译:Linux中国 / jessie-pang linux.cn/article-9256-1.html 本文是关于 fork 和 exec 是如何在 Unix 上工作的。你或许已经知道,也有人还不知道。几年前当我了解到这些时,我惊叹不已。 我们要做的是启动一个进程。我们已经在博客上讨论了很多关于系统调用的问题,每当你启动一个进程或者打开一个文件,这都是一个系统调用。所以你可能会认为有这样的系统调用: start_process(["ls","-l","my_cool_dir
学会下面这几个方法,让你轻松玩转内存溢出,我们会从 Windows、Linux 两个系统来做示例展示,有人会有疑问了:为什么要说 Windows 版的 ?因为目前市面上还是有很多 Windows 服务器的,应用于传统行业、政府结构、医疗行业等等;两个系统下的情况都演示下,有备无患,
在linux中fork函数是非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。
后文会从 Windows、Linux 两个系统来做示例展示,有人会有疑问了:为什么要说 Windows 版的 ? 目前市面上还是有很多 Windows 服务器的,应用于传统行业、政府结构、医疗行业 等等;两个系统下的情况都演示下,有备无患
搞电子都知道,电路不是焊接出来的,是调试出来的。程序员也一定认同,程序不是写出来的,是调试出来的。那么调试工具就显得尤为重要,linux作为笔者重要的开发平台,在linux中讨论调试工具主要是为那些入门者提供一些帮助。调试工具能让我们能够监测、控制和纠正正在运行的程序。我们在运行一些程序的时候,可能被卡住或出现错误,或者运行过程或结果,没能如我们预期,此时,最迫切需要明白究竟发生了什么。为了修复程序,剖析和了解程序运行的细节, 调试工具就成为了我们的必备工具,工于善其事,必先利其器。在Linux下的用户空间调试工具主要有系统工具和专门调试工具:'print' 打印语句,这是新手最常用的,也是最不提倡使用的;查询 (/proc, /sys 等)系统的虚拟文件查看,这个方法有局限性;跟踪 (strace/ltrace)工具使用这个比较普遍,值得提倡;Valgrind (memwatch)内存排除工具,在内存排除方面比较独到,是内存排错的法宝;GDB大名鼎鼎的程序调试工具,这个是个全能的工具,没有完不成的,只有你不知道的。
关于进程和线程,在 Linux 中是一对儿很核心的概念。但是进程和线程到底有啥联系,又有啥区别,很多人还都没有搞清楚。
在 Linux 中,每个程序和 守护程序(daemon)都是一个“ 进程(process)”。 大多数进程代表一个正在运行的程序。而另外一些程序可以派生出其他进程,比如说它会侦听某些事件的发生,然后对其做出响应。并且每个进程都需要一定的内存和处理能力。你运行的进程越多,所需的内存和 CPU 使用周期就越多。在老式电脑(例如我使用了 7 年的笔记本电脑)或轻量级计算机(例如树莓派)上,如果你关注过后台运行的进程,就能充分利用你的系统。
进程是正在运行的程序,Linux系统通常有数百个进程同时运行。本文就来介绍下Linux是如何进行进程管理的。
读者群里一位同学的线上服务器出现一个诡异的问题,执行任何命令都是报错“fork:无法分配内存”。这个问题最近出现的,前几次重启后解决的,但是每隔 2-3 天就会出现一次。
最近工作中使用的自动化脚本涉及的一个功能是通过shell脚本来控制进程的重启(因为自己以前写过, 但是因为归纳总结做的不到位,导致找不到原来的笔记了)只能从网上搜下大概的,然后根据自己的理解重新整理下了, 整理的同时也复习了一下基本的shell脚本的编写, 做到温故知新!
昨天下午突然收到运维邮件报警,显示数据平台服务器cpu利用率达到了98.94%,而且最近一段时间一直持续在70%以上,看起来像是硬件资源到瓶颈需要扩容了,但仔细思考就会发现咱们的业务系统并不是一个高并发或者CPU密集型的应用,这个利用率有点太夸张,硬件瓶颈应该不会这么快就到了,一定是哪里的业务代码逻辑有问题。
1、问题背景 昨天下午突然收到运维邮件报警,显示数据平台服务器cpu利用率达到了98.94%,而且最近一段时间一直持续在70%以上,看起来像是硬件资源到瓶颈需要扩容了,但仔细思考就会发现咱们的业务系统
简单来讲,进程就是运行中的程序。更进一步,在用户空间中,进程是加载器根据程序头提供的信息将程序加载到内存并运行的实体。
一、前言 Unix和类Unix操作系统提供的ptrace系统调用支持一个进程控制另一个进程,常被用于程序调试、分析和监测工具,例如gdb、strace等。通过ptrace可以查看和修改被控制进程的内部状态,因此渗透攻击在注入shellcode时也会使用ptrace。本文介绍一种Linux下使用ptrace隐藏注入shellcode的技术和防御方法。 二、背景 不同版本操作系统有各自实现ptrace系统调用的方式,本文只关注Linux环境,因此先简单说明Linux下ptrace系统调用的用法。首先定义控
作者:且飙丶且珍惜 来源: http://blog.csdn.net/dextrad_ihacker/article/details/51930998 除了网络通信外,服务器程序还必须考虑许多其他细节问题,零碎,但基本上都是模板式的。 ———引 Linux服务器程序一般以后台形式运行。后台程序又称守护进程。它没有控制终端,因而也不会意外接受用户输入。守护进程的父进程一般是init进程(pid=1)。 Linux服务器程序通常有一套日志系统,它至少能输出日志到文件,有的高级服务器可以输出日志到专门的UDP
除了网络通信外,服务器程序还必须考虑许多其他细节问题,零碎,但基本上都是模板式的。
你可以使用 ps 命令来查看正在运行的进程。你通常会使用 ps 命令的参数来显示出更多的输出信息。我喜欢使用 -e 参数来查看每个正在运行的进程,以及 -f 参数来获得每个进程的全部细节。以下是一些例子:
如果大家有过在容器中执行 ps 命令的经验,都会知道在容器中的进程的 pid 一般是比较小的。例如下面我的这个例子。
作为数据科学、机器学习的工具,Linux有着非常广泛的应用场景。其完全开放、高度可定制化的属性,使得用户可以用非常低的成本搭建所需的工作环境,同时安装依赖的时候也非常方便,直接一条命令就安装好了。
守护进程(Daemon)是执行在后台的一种特殊进程。它独立于控制终端而且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种非常实用的进程。Linux的大多数server就是用守护进程实现的。比方,Internetserverinetd,Webserverhttpd等。同一时候,守护进程完毕很多系统任务。比方,作业规划进程crond,打印进程lpd等。 守护进程的编程本身并不复杂,复杂的是各种版本号的Unix的实现机制不尽同样,造成不同Unix环境下守护进程的编程规则并不一致。这须要读者注意,照搬某些书上的规则(特别是BSD4.3和低版本号的System V)到Linux会出现错误的。以下将全面介绍Linux下守护进程的编程要点并给出具体实例。 一. 守护进程及其特性 守护进程最重要的特性是后台执行。在这一点上DOS下的常驻内存程序TSR与之类似。其次,守护进程必须与其执行前的环境隔离开来。这些环境包含未关闭的文件描写叙述符,控制终端,会话和进程组,工作文件夹以及文件创建掩模等。这些环境一般是守护进程从执行它的父进程(特别是shell)中继承下来的。最后,守护进程的启动方式有其特殊之处。它能够在Linux系统启动时从启动脚本/etc/rc.d中启动,能够由作业规划进程crond启动,还能够由用户终端(一般是shell)执行。 总之,除开这些特殊性以外,守护进程与普通进程基本上没有什么差别。因此,编写守护进程实际上是把一个普通进程依照上述的守护进程的特性改造成为守护进程。假设读者对进程有比較深入的认识就更easy理解和编程了。 二. 守护进程的编程要点 前面讲过,不同Unix环境下守护进程的编程规则并不一致。所幸的是守护进程的编程原则事实上都一样,差别在于具体的实现细节不同。这个原则就是要满足守护进程的特性。同一时候,Linux是基于Syetem V的SVR4并遵循Posix标准,实现起来与BSD4相比更方便。编程要点例如以下; 1. 在后台执行。 为避免挂起控制终端将Daemon放入后台执行。方法是在进程中调用fork使父进程终止,让Daemon在子进程中后台执行。 if(pid=fork()) exit(0);//是父进程,结束父进程,子进程继续 2. 脱离控制终端,登录会话和进程组 有必要先介绍一下Linux中的进程与控制终端,登录会话和进程组之间的关系:进程属于一个进程组,进程组号(GID)就是进程组长的进程号(PID)。登录会话能够包含多个进程组。这些进程组共享一个控制终端。这个控制终端一般是创建进程的登录终端。 控制终端,登录会话和进程组一般是从父进程继承下来的。我们的目的就是要摆脱它们,使之不受它们的影响。方法是在第1点的基础上,调用setsid()使进程成为会话组长: setsid(); 说明:当进程是会话组长时setsid()调用失败。但第一点已经保证进程不是会话组长。setsid()调用成功后,进程成为新的会话组长和新的进程组长,并与原来的登录会话和进程组脱离。因为会话过程对控制终端的独占性,进程同一时候与控制终端脱离。 3. 禁止进程又一次打开控制终端 如今,进程已经成为无终端的会话组长。但它能够又一次申请打开一个控制终端。能够通过使进程不再成为会话组长来禁止进程又一次打开控制终端:
如果你经常使用容器,那么你很有可能希望在某个时刻查看正在运行的容器的文件系统。也许容器无法正常运行,你想读取一些日志,也许你想检查容器内部的一些配置文件…或者,你可能像我一样,想在该容器中的二进制文件上放置一些 eBPF 探针(稍后将详细介绍)。 不管原因是什么,在这篇文章中,我们将介绍一些可以用来检查容器中的文件的方法。 我们将从研究容器文件系统的简单和通常推荐的方法开始,并讨论为什么它们不能总是工作。接下来,我们将对 Linux 内核如何管理容器文件系统有一个基本的了解,我们将利用这一了解以不同但仍然
本号提供的工具、教程、学习路线、精品文章均为原创或互联网收集,旨在提高网络安全技术水平为目的,只做技术研究,谨遵守国家相关法律法规,请勿用于违法用途,如有侵权请联系小编处理。
一位同学曾给我打比方:宿主机就好比一间大房子,docker把它成了N个小隔断。在这些小隔断之间,有独立的卫生间、小床、电视...
大家好,我是程栩,一个专注于性能的大厂程序员,分享包括但不限于计算机体系结构、性能优化、云原生的知识。
epoll 是 Linux 平台下特有的一种 I/O 复用模型实现,于 2002 年在 Linux kernel 2.5.44 中被引入。在 epoll 之前,Unix/Linux 平台下的 I/O 复用模型包含 select 和 poll 两个系统调用。随着因特网的发展,因特网的用户量越来越大,C10K 问题出现。基于 select 和 poll 编写的网络服务已经不能满足不能满足用户的需求了,业界迫切希望更高效的系统调用出现。在此背景下,FreeBSD 的 kqueue 和 Linux 的 epoll 被研发了出来。kqueue 和 epoll 的出现,终结了 C10K 问题,C10K 问题就此作古。
前言:ptrace 是 Linux 内核提供的非常强大的系统调用,通过 ptrace 可以实现进程的单步调试和收集系统调用情况。比如 strace 和 gdb 都是基于 ptrace 实现的,strace 可以显示进程调用了哪些系统调用,gdb 可以实现对进程的调试。本文介绍这些工具的底层 ptrace 是如何实现的。这里选用了 1.2.13 的早期版本,原理是类似的,新版内核代码过多,没必要陷入过多细节中。
需要获取某程序运行过程中的内存消耗,一般情况可以使用 top 命令来人工分析,不过我遇到一个程序其内部调用包括 python, R, 以及一系列 linux 命令,这就导致人工统计不太现实
关于linux线程 在许多经典的操作系统教科书中, 总是把进程定义为程序的执行实例, 它并不执行什么, 只是维护应用程序所需的各种资源. 而线程则是真正的执行实体. 为了让进程完成一定的工作, 进程必
不必太纠结于当下,也不必太忧虑未来,当你经历过一些事情的时候,眼前的风景已经和从前不一样了。——村上春树
注:本文包括了ebpf的原理介绍、流程分析、相关资料链接、工具编写实战等,可以选择感兴趣的部分直接阅读;鉴于作者语文水平有限,很多地方描述可能不清楚,有错误或疑问欢迎指出交流
通过Apache实现反向代理的功能,类似Nginx反向代理和HAProxy反向代理。
runC是一个开源项目,由Docker公司(之前称为Docker Inc.)主导开发,并在GitHub上进行维护。它是Docker自版本1.11起采用的默认容器运行时(runtime),也是其他容器编排平台(如Kubernetes)的基础组件之一。因此在容器生态系统中,runC扮演着关键的角色。runC是一个CLI工具,用于根据Open Container Initiative(OCI)规范在Linux系统上生成和运行容器。它是一个基本的容器运行时工具,负责启动和管理容器的生命周期,包括创建、运行、暂停、恢复和销毁容器。通过使用runC,开发人员和运维人员可以更加灵活地管理容器,并且可以在不同的容器平台之间实现容器的互操作性。
eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。
rsync,英文全称是remote synchronize,是一款实现远程同步功能的免费软件,它在同步文件的同时,可以保持原来文件的权限、时间、软硬链接等附加信息。 rsync提供了一个客户机和远程文件服务器的文件同步的快速方法,而且可以通过ssh方式来传输文件。甚至还可以实现只同步一个文件里有变化的内容部分,所以可以实现快速的同步备份数据。同时,rsync还可以实现同步本地数据、删除文件和目录的功能。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,ps命令就是最基本进程查看命令。使用该命令可以确定有哪些进程正在运行和运行的状态、进程是否结束、进程有没有僵尸、哪些进程占用了过多的资源等等.总之大部分信息都是可以通过执行该命令得到。
这周帮朋友用 eBPF/SystemTap 这样的动态 tracing 工具做了一些很有趣的功能。这篇文章算是一个总结
前段时间学习群中有朋友在询问线上 Linux 主机的命令行操作审计方案时,当时给了一个用 rsyslog + elasticsearch 的方案简单搪塞过去了,并没有对方案的细节进行说明。要命的是当时立了个 flag 说在下次公众号文章更新中推送,时间一晃快 2 个月过去了,今天终于来把之前的挖的坑给填上。
在 Linux 中,进程是我们非常熟悉的东东了,哪怕是只写过一天代码的人也都用过它。但是你确定它不是你最熟悉的陌生人?我们今天通过深度剖析进程的创建过程,帮助你提高对进程的理解深度。
前一篇介绍了线上应用故障排查之一:高CPU占用,这篇主要分析高内存占用故障的排查。
在本文中,我们将继续上周关于 PID 命名空间的讨论(并扩展我们正在进行的关于命名空间的系列文章)。PID 命名空间的一个用途是实现一个进程包(容器),其行为类似于一个自包含的 Linux系统。init 进程是传统系统和 PID 命名空间容器的关键部分。因此,我们将研究 init 进程的特殊角色,并着重于它与传统 init 进程不同的几个方面。此外,我们还将研究命名空间 API 应用于 PID 命名空间时的一些其他细节。
Linux内核提供了一种通过/proc文件系统,在运行时访问内核内部数据结构、改变内核设置的机制。proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。它以文件系统的方式为访问系统内核数据的操作提供接口。 用户和应用程序可以通过proc得到系统的信息,并可以改变内核的某些参数。由于系统的信息,如进程,是动态改变的,所以用户或应用程序读取proc文件时,proc文件系统是动态从系统内核读出所需信息并提交的。下面列出的这些文件或子文件夹,并不是都是在你的系统中存在,这取决于你的内核配置和装载的模块。另外,在/proc下还有三个很重要的目录:net,scsi和sys。 Sys目录是可写的,可以通过它来访问或修改内核的参数,而net和scsi则依赖于内核配置。例如,如果系统不支持scsi,scsi目录不存在。 除了以上介绍的这些,还有的是一些以数字命名的目录,它们是进程目录。系统中当前运行的每一个进程都有对应的一个目录在/proc下,以进程的 PID号为目录名,它们是读取进程信息的接口。而self目录则是读取进程本身的信息接口,是一个link。
计算机如何执行进程呢?这是计算机运行的核心问题。即使已经编写好程序,但程序是死的。只有活的进程才能产出。我们已经从Linux进程基础中了解了进程。现在我们看一下从程序到进程的漫漫征程。 一段程序 下面是一个简单的C程序,假设该程序已经编译好,生成可执行文件vamei.exe。 #include <stdio.h> int glob=0; /*global variable*/ void main(void) {
《不可不知的7个JDK命令》介绍了些jdk自带的问题排查工具,机器出现CPU飙升的情况,此时就可以借助工具,排查应用端是否存在一些潜在问题。
领取专属 10元无门槛券
手把手带您无忧上云