妈妈怎么知道卧室里小孩醒了? ① 时不时进房间看一下:查询方式 简单,但是累 ② 进去房间陪小孩一起睡觉,小孩醒了会吵醒她:休眠-唤醒 不累,但是妈妈干不了活了 ③ 妈妈要干很多活,但是可以陪小孩睡一会,定个闹钟:poll方式 要浪费点时间,但是可以继续干活。 妈妈要么是被小孩吵醒,要么是被闹钟吵醒。 ④ 妈妈在客厅干活,小孩醒了他会自己走出房门告诉妈妈:异步通知 妈妈、小孩互不耽误
io_uring是Linux内核在v5.1引入的一套异步IO接口,随着其迅速发展,现在的io_uring已经远远超过了纯IO的范畴。从Linux v5.3版本开始,io_uring陆续添加了网络编程相关的API,对用户提供sendmsg、recvmsg、accept、connect等接口的异步支持,将io_uring的生态范围扩大到了网络领域。
在 Linux 系统之中有一个核心武器:epoll 池,在高并发的,高吞吐的 IO 系统中常常见到 epoll 的身影。
在Linux编程中,一切皆文件,往往是对一个文件进行操作,比如说串口,和传感器打交道,一般情况下就是一来一去,一收一发,但是,如果我有多个传感器,而传感器之间又有关联,我想同时监控一个或者多个以上的文件描述符,要如何去实现这个需求呢?
linux操作系统包含了五种IO模型,各种上层编程语言或者网络编程框架的上层实现都是基于操作系统的这些IO实现来实现的。
IO模型 只关注IO,不关注IO读写完成后的事情。 同步:程序(APP)自己进行读/写操作 异步:由Kernel完成读/写,程序跑起来感觉像没有访问IO,访问的是buffer 阻塞:BLOCKING,一直等待着方法有效的返回结果 非阻塞:NONBLOCKING,调用方法的时候就返回是否读取到,(java中要么返回null,要么返回具体的对象) 所以IO模型有: 同步阻塞:程序(APP)自己读取,调用了方法后一直等待着有效的返回结果 同步非阻塞:程序(APP)自己读取,调用方法的瞬间就给出是否读取到的返回结
应用层采用超时机制访问驱动设备。即如果第一次访问可以使用直接返回,若不能访问,则先将应用层休眠,在到了设定的时间,再访问一次,此时可以访问则返回成功标志,若不能访问则返回失败。
同步阻塞IO在等待数据就绪上花去太多时间,而传统的同步非阻塞IO虽然不会阻塞进程,但是结合轮询来判断运维
select的本质是采用32个整数的32位,即32*32= 1024来标识,fd值为1-1024。当fd的值超过1024限制时,就必须修改FD_SETSIZE的大小。这个时候就可以标识32*max值范围的fd。
select、poll 和 epoll 都是 Linux API 提供的 IO 复用方式。
epoll有EPOLLLT和EPOLLET两种触发模式,水平触发和边缘触发. 此处略
http://www.cnblogs.com/Anker/p/3265058.html
首先,我们要了解IO复用模型之前,先要了解在Linux内核中socket事件机制在内核底层是基于什么机制实现的,它是如何工作的,其次,当我们对socket事件机制有了一个基本认知之后,那么我们就需要思考到底什么是IO复用,基于socket事件机制的IO复用是怎么实现的,然后我们才来了解IO复用具体的实现技术,透过本质看select/poll/epoll的技术优化,逐渐去理解其中是为了解决什么问题而出现的,最后本文将围绕上述思维导图列出的知识点进行分享,还有就是文章幅度较长且需要思考,需要认真阅读!
I/O基础 1、java1.4之前,java对I/O支持不完善,存在以下问题: 没有数据缓冲区,I/O性能存在问题。 没有C或者C++的channel概念,只有输入输出流。 同步式阻塞式I/O通信,通常会导致通信线程被长时间阻塞。 支持的字符集有限,硬件可移植性不好。 2、Linux网络I/O模型 Linux内核将所有外部设备都看作一个文件来操作,对文件的操作都会调用内核提供的系统命令,返回一个fd(文件描述符)。 描述符就是一个数字,它指向内核中的一个结构体(文件路径,数据区等属性)。 fd演示:
Linux内核将所有的外部设备当做一个文件来操作,对文件的读写操作会调用内核的系统命令,返回一个文件描述符(file descriptor,fd)。而对socket的读写也有相应的描述符,称为socketfd。描述符就是一个数字,指向内存中的一个结构体(文件路径或者数据区等)
这些函数的名字基本都可以自解释。 再介绍下misc 设备,linux 内核将一些不符合预先确定的字符设备划分为杂项设备,使用的数据结构如下;
jdk:http://hg.openjdk.java.net/jdk8u/jdk8u60/file/d8f4022fe0cd
玩java也有些年头,感觉对于nio的理解总是停留在IO复用的io模型,知其然但不知其所以然,故而今天来解开Java NIO的神秘面纱。 首先来回顾下NIO基本概念,Java NIO主要由Buffer、Channel、Selector三大组件组成。其他组件比如Pipe、FileLock只不过是这三个组件的公共工具类。 Buffer是与NIO Channel交互的载体,提供了一系列便于操作内存块的方法。读数据是从Channel读取到Buffer中,写数据是从Buffer写入到Channel。 使用Buffer进行读写数据通常需要4步: 将数据写入到Buffer
在linux的高性能网络编程中,绕不开的就是epoll。和select、poll等系统调用相比,epoll在需要监视大量文件描述符并且其中只有少数活跃的时候,表现出无可比拟的优势。epoll能让内核记住所关注的描述符,并在对应的描述符事件就绪的时候,在epoll的就绪链表中添加这些就绪元素,并唤醒对应的epoll等待进程。 本文就是笔者在探究epoll源码过程中,对kernel将就绪描述符添加到epoll并唤醒对应进程的一次源码分析(基于linux-2.6.32内核版本)。由于篇幅所限,笔者聚焦于tcp协议下socket可读事件的源码分析。
因为项目需要,接触和使用了Netty,Netty是高性能NIO通信框架,在业界拥有很好的口碑,但知其然不知其所以然。
这里我将对比一下常见的多路复用技术:select、poll、epoll、kqueue 和 IOCP(Windows)。
很多人说BIO不好,会“block”,但到底什么是IO的Block呢?考虑下面两种情况:
通过前面的文章我们已经了解了「数据包从HTTP层->TCP层->IP层->网卡->互联网->目的地服务器」以及「数据包怎么从网线到进程,在被应用程序使用」涉及的知识。 本文将继续介绍网络编程中的各种细节和IO多路复用的原理。
说到IO模型,都会牵扯到同步、异步、阻塞、非阻塞这几个词。从词的表面上看,很多人都觉得很容易理解。但是细细一想,却总会发现有点摸不着头脑。自己也曾被这几个词弄的迷迷糊糊的,每次看相关资料弄明白了,然后很快又给搞混了。
一、用select实现的并发服务器,能达到的并发数,受两方面限制 1、一个进程能打开的最大文件描述符限制。这可以通过调整内核参数。可以通过ulimit -n来调整或者使用setrlimit函数设置,
哈哈,反正我在面试时候经常会问候选人这个问题,这个问题其实是对redis内部机制的一个考察,可以牵扯出好多涉及底层深入原理的一些列问题。
TFT08006官方支持的一款MIPI屏幕,8寸,分辨率800*1280。官方套装支持触控。
本文介绍了按键精灵第四代的按键互斥、阻塞机制,以及如何使用这些机制来编写高效的自动化程序。
输入输出(input/output)的对象可以是文件(file), 网络(socket),进程之间的管道(pipe)。在linux系统中,都用文件描述符(fd)来表示。
工作队列常见的使用形式是配合中断使用,在中断的服务函数里无法调用会导致休眠的相关函数代码,有了工作队列机制以后,可以将需要执行的逻辑代码放在工作队列里执行,只需要在中断服务函数里触发即可,工作队列是允许被重新调度、睡眠。
BIO(Blocking IO) 又称同步阻塞IO,一个客户端由一个线程来进行处理
0.前言 为提升信鸽基础服务质量,笔者就网络收包全流程进行了内容整理。 网络编程中我们接触得比较多的是socket api和epoll模型,对于系统内核和网卡驱动接触得比较少,一方面可能我们的系统没有需要深度调优的需求,另一方面网络编程涉及到硬件,驱动,内核,虚拟化等复杂的知识,使人望而却步。网络上网卡收包相关的资料也比较多,但是比较分散,在此梳理了网卡收包的流程,分享给大家,希望对大家有帮助,文中引用了一些同事的图表和摘选了网上资料,在文章最后给出了参考文献与部分来源,感谢这些作者的分享。 1.整体流程
总览:Go中网络交互采用多路复用的技术,具体到各个平台,即Kqueue、Epoll、Select、Poll等,下面以Linux下的Epoll实现为例进行分析。
select本质上是通过设置或检查存放fd标志位的数据结构进行下一步处理。 这带来缺点:
在之前的文章中分别详细讲解网络IO模型以及IO复用模型技术实现的本质,关于epoll的技术分析,发现存在部分知识点不够严谨且也有些混乱,即epoll技术在linux底层内核源码实现中暂时没有看到有使用虚拟内存分配的技术实现,因此对此知识点持有怀疑但保留网络上的技术资料观点;其次关于epoll技术实现上,正是通过使用中间层的设计思想来解决本身select/poll无法扩展的局限性,同时借助分散的设计思想来解决select/poll存在的性能,最后我们会关注与epoll相关的其他高级轮询技术以及在早期中C10K问题是如何解决的,同时互联网技术发展至今,又出现C10M问题,解决思路有哪些可以借鉴的.
这里深度理解一下在Linux下网络包的接收过程,为了简单起见,我们用udp来举例,如下:
我们知道Tornado 优秀的大并发处理能力得益于它的 web server 从底层开始就自己实现了一整套基于 epoll 的单线程异步架构,其他 web 框架比如Django或者Flask的自带 server 基本是基于 wsgi 写的简单服务器,并没有自己实现底层结构。而tornado.ioloop 就是 tornado web server 最底层的实现。
epoll同样是linux上的IO多路复用的一种实现,内核在实现时使用的数据结构相比select要复杂,但原理上并不复杂,我们力求在下面的描述里抽出主干,理清思路。
写过 Linux 驱动的小伙伴,一定对 file_operations 结构体不陌生,我们常常实现其中的 open、read、write、poll 等函数,今天为大家讲解其中每个函数的作用。
关于 select, poll, epoll,网络 IO 演变发展过程和模型介绍 这篇文章讲得很好,本文就不浪费笔墨了。
本文经 CyC2018 大佬授权发表,更多技术内容请前往 https://github.com/CyC2018/CS-Notes 查看。
1.写出最底层Led_Open(),Led_Write(),Led_Read() 2.如何让内核知道下面有我们写好的操作硬件的函数呢?定义一个file_operations结构体(指向Led_Open等底层函数)。使用函数regsiter_chrdev(major,”first_drv”,&first_drv_fops)注册告诉内核(通过major索引)。 3.regsiter_chrdev被谁调用?被驱动入口函数调用。first_drv_init() 4.如何知道调用first_drv_init(),还是其他的函数呢?利用宏module_init(first_drv_init)定义一个结构体,结构体中有函数指针,指向入口函数。 5.出口函数first_drv_exit。卸载驱动unregsiter_chrdev(major,”first_drv”,&first_drv_fops)。如何知道何时来调用first_drv_exit?module_init(first_drv_exit)定义一个结构体,结构体中有函数指针,指向入口函数。
本文介绍了如何利用异步通知机制来实现一个按键防抖功能。首先介绍了异步通知的原理,然后通过代码示例介绍了如何使用异步通知来实现按键防抖功能。最后对实现效果进行了展示和说明。
简单地说,它们就是“定个闹钟”:在调用 poll、select 函数时可以传入“超时时间”。在这段时间内,条件合适时(比如有数据可读、有空间可写)就会立刻返回,否则等到“超时时间”结束时返回错误。
本系列我们介绍消息队列 Kombu。Kombu 的定位是一个兼容 AMQP 协议的消息队列抽象。通过本文,大家可以了解 Kombu 中的 Hub 概念。
本文从操作系统的角度来解释BIO,NIO,AIO的概念,含义和背后的那些事。本文主要分为3篇。 第一篇讲解BIO和NIO以及IO多路复用 第二篇讲解AIO和文件IO 第三篇讲解在这些机制上的一些应用的实现方式,比如nginx,nodejs,Java NIO等 到底什么是“IO Block” 很多人说BIO不好,会“block”,但到底什么是IO的Block呢?考虑下面两种情况: 用系统调用read从socket里读取一段数据 用系统调用read从一个磁盘文件读取一段数据到内存 如果你的直觉告诉你,这两种都算
领取专属 10元无门槛券
手把手带您无忧上云