中 , 介绍了 调度类 sched_class 结构体的源码 , 重要的 字段 以及 函数指针 ;
结构体是常用的自定义构造类型,是一种很常见的数据打包方法。结构体对象的初始化有多种方式,分为指定初始化、顺序初始化、构造函数初始化。假如有如下结构体。
原文链接:https://www.cnblogs.com/my_life/articles/10935859.html
内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
之前写过一篇文章 Linux下c语言中的main函数是如何被调用的,该篇文章侧重于从user space层面讲程序的运行,而文章中提到的有关kernel space层面的相关系统调用,比如fork、execve等,都被一笔带过。
在 Unix 的世界里,有句很经典的话:一切对象皆是文件。这句话的意思是说,可以将 Unix 操作系统中所有的对象都当成文件,然后使用操作文件的接口来操作它们。Linux 作为一个类 Unix 操作系统,也努力实现这个目标。
在Linux 内核编程中,会经常见到一个宏函数container_of(ptr,type,member)。已知结构体type的成员member的地址ptr,求结结构体type的起始地址。
1) 提供友好的用户接口,用户可以在sys/bus/platform/下找到相应的驱动和设备。
============================================================================= struct A { char array[100]; //array不知道在哪里呢?只是告诉c语言编译器有这么一种类型结构。是一种语法形式,不要误解。 int a; };
该文件是实现软链接相关的功能。我们可以了解到软链接的实现原理。 /* * linux/fs/minix/symlink.c * * Copyright (C) 1991, 1992 Linus Torvalds * * minix symlink handling code */ #ifdef MODULE #include <linux/module.h> #endif #include <asm/segment.h> #include <linux/errno.h> #incl
我们都知道C语言中变量的类型决定了变量存储占用的空间。当我们要使用一个变量保存年龄时可以将其声明为int类型,当我们要使用一个变量保存某一科目的考试成绩时可以将其声明为float。
结构体是常用的自定义构造类型,是一种很常见的数据打包方法。结构体对象的初始化有多种方式,分为顺序初始化、指定初始化、构造函数初始化。假如有如下结构体。
Linux下ls命令显示符号链接权限为777的探索 ——深入ls、链接、文件系统与权限 一、摘要 ls是Linux和Unix下最常使用的命令之一,主要用来列举目录下的文件信息,-l参数允许查看当前目录下所有可见文件的详细属性,包括文件属性、所有者、文件大小等信息。但是,当其显示符号链接的属性时,无论其指向文件属性如何,都会显示777,即任何人可读可写可执行。本文从ls命令源码出发,由浅入深地分析
在C++中,位域(bit fields)是一种特殊的数据结构,允许将结构体或类的成员变量按位进行分配。通过位域,可以有效地利用内存,节省存储空间,特别适用于表示布尔类型、标志位或其他不需要完整字节的数据。
本文讲述了Linux中RCU(Read-Copy-Update)机制在内存管理中的重要作用,以及如何在Linux内核中实现和管理RCU。在Linux内核中,RCU用于在多个进程共享相同内存空间时,保证这些进程之间的数据一致性。本文首先介绍了RCU的基本原理,然后逐步深入介绍了Linux内核中RCU的实现细节。最后,通过一个具体的例子,展示了如何在Linux内核中实现一个简单的RCU。
回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。
网络安全大神Peter Parkanyi用Rust程序和eBPF来"窥探"Zoom程序的内容。最近Zoom因为新冠病毒而大火一把,而且又因为美国政府担心Zoom的服务器绕中国一圈再回到美国引发安全顾虑又大火一把。这个博文值得关注。
在 Linux 中,进程是我们非常熟悉的东东了,哪怕是只写过一天代码的人也都用过它。但是你确定它不是你最熟悉的陌生人?我们今天通过深度剖析进程的创建过程,帮助你提高对进程的理解深度。
在LED子系统中,硬件驱动层相关文件在包括:kernel/drivers/leds/ 目录下,其主要的函数有:led-gpio.c、led-xxx.c,其中led-gpio.c为通用的平台驱动程序,led-xxx.c为不同厂家提供的平台驱动程序。
在应用到linux的设备(特别是手机)中,大部分硬件设备与主芯片都是通过iic通讯的,譬如TP、加速度传感器、温湿度传感器等等。记录一次自己调试linux开发板iic器件(ap3216c光敏设备)。
我们知道,Linux系统中我们经常将一个块设备上的文件系统挂载到某个目录下才能访问这个文件系统下的文件,但是你有没有思考过:为什么块设备挂载之后才能访问文件?挂载文件系统Linux内核到底为我们做了哪些事情?是否可以不将文件系统挂载到具体的目录下也能访问?下面,本文将详细讲解Linxu系统中,文件系统挂载的奥秘。
#一、使用gdb分析QEMU代码# 使用gdb不仅可以很好地调试代码,也可以利用它来动态地分析代码。使用gdb调试QEMU需要做一些准备工作: 1, 编译QEMU时需要在执行configure脚本时的参数中加入--enable-debug。 2, 从QEMU官方网站上下载一个精简的镜像——linux-0.2.img。linux-0.2.img只有8MB大小,启动后包含一些常用的shell命令,用于QEMU的测试。 $wget http://wiki.qemu.org/download/linux-0.2.i
本文讲解系统的进程管理相关内容,系统的进程管理是有关系统的所有进程的调度、排序、分配资源、创建、销毁等,是比较重要的内容。
在linux内核中封装了一个通用的双向链表库,这个通用的链表库有很好的扩展性和封装性,它给我们提供了一个固定的指针域结构体,我们在使用的时候,只需要在我们定义的数据域结构体中包含这个指针域结构体就可以了,具体的实现、链接并不需要我们关心,只要调用提供给我们的相关接口就可以完成了。
在linux下,假设我们想打开文件/dev/tty,我们可以使用系统调用open,比如:
该方法中的saved_root_name变量的值是在kernel启动时,由传给kernel的root参数决定的,对应的设置方法如下:
虽然讲解完了内核线程的创建过程,但是似乎又少点什么,那么下面我们来看两个细节:内核线程执行处理函数和内核线程上下文切换细节:
本文简介本文介绍Linux RCU的基本概念。这不是一篇单独的文章,这是《谢宝友:深入理解Linux RCU》系列的第3篇,前序文章:谢宝友: 深入理解Linux RCU之一——从硬件说起= 谢宝友:
misc(杂项)设备,由于硬件设备的多样化,有一些设备不知道如何归类,所以linux将这些不知道怎么归类的设备归类为misc设备。例如led、watchdog、beep、adc等都可以归纳为misc设备。
知识分享之Golang篇是我在日常使用Golang时学习到的各种各样的知识的记录,将其整理出来以文章的形式分享给大家,来进行共同学习。欢迎大家进行持续关注。
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);
epoll的事件触发机制有两种,分别为 level-triggered 和 edge-triggered。
list是新队列的head指针, 包括的元素从原head队列的第一个元素到entry, head队列仅包括余下的元素
在linux系统中, 我们接触最多的莫过于用户空间的任务,像用户线程或用户进程,因为他们太活跃了,也太耀眼了以至于我们感受不到内核线程的存在,但是内核线程却在背后默默地付出着,如内存回收,脏页回写,处理大量的软中断等,如果没有内核线程那么linux世界是那么的可怕!本文力求与完整介绍完内核线程的整个生命周期,如内核线程的创建、调度等等,当然本文还是主要从内存管理和进程调度两个维度来解析,且不会涉及到具体的内核线程如kswapd的实现,最后我们会以一个简单的内核模块来说明如何在驱动代码中来创建使用内核线程。
LINUX的库提供的波特率是标准波特率,应用时有时会用到非标准的波特率。以下试验使用的xilinx的zynq7020,linux内核是4.14版本。以增加波特率100k为例。看了一些直接在应用端改的一些方法,已经取消了,所以更改了内核
在众多高级编程语言中,C语言历史悠久,且生命力旺盛,系统开发和应用开发兼具,是信息技术发展的一把利器。这里简单介绍一下C语言的发展及其对跨平台开发的影响。
Linux下的tcp编程中,第一步就是要创建socket,本文将从源码角度看下socket是如何被创建的。
红黑树(Red-Black Tree,RBT)是一种平衡的二叉查找树,前面的红黑树原理与实现这篇文章中详细介绍了红黑树的细节。在Linux的内核源代码中已经给我们实现了一棵红黑树,我们可以方便地拿过来进行使用。本文将参考Linux内核的源码和文档资料,介绍Linux内核中红黑树的实现细节及使用方法。
把xorm工具(https://github.com/go-xorm/cmd/blob/master/README.md ) 可执行放到$PATH下面,然后执行:
本文介绍了Linux信号处理的基础知识,包括信号的来源、信号的发送与接收、信号的默认处理、信号的捕捉和处理、信号的屏蔽与解除、以及多线程环境中信号的处理方法。
结构体是连续存储的,但由于结构体中成员类型各异,所以会存在内存对齐问题,也就是内存里面会有空档,具体的对齐方式这里 暂不讨论;
今天分析的内容是从socket函数开始,看看linux网络层的设计。下面我们看一下我们平时写网络编程代码时的用法。
这张图画了挺久的,主要是想让大家可以从全局角度,看下linux内核中系统调用的实现。
原文出自:http://blog.csdn.net/ghostyu/article/details/6908805
“你看你所有代码都是把字段取出来计算,然后,再塞回去。各种不同层面的业务计算混在一起,将来有一点调整,所有代码都得跟着变。”
在上一节LCD层次分析中,得出写个LCD驱动入口函数,需要以下4步: 1) 分配一个fb_info结构体: framebuffer_alloc(); 2) 设置fb_info 3) 设置硬件相关的操作
VFS采用了面向对象的设计思路,将一系列概念抽象出来作为对象而存在,它们包含数据的同时也包含了操作这些数据的方法。当然,这些对象都只能用数据结构来表示,而不可能超出C语言的范畴,不过即使在C++里面数据结构和类的区别也仅仅在于类的成员默认私有,数据结构的成员默认公有。VFS主要有如下4个对象类型。
除了读取和写入设备外,大部分驱动程序还需要另外一种能力,即通过设备驱动程序执行各种类型的硬件控制。比如弹出介质,改变波特率等等。这些操作通过ioctl方法支持,该方法实现了同名的系统调用。
这篇文章介绍,如何使用杂项设备框架编写一个简单的按键驱动,完成编写、编译、安装、测试等流程,了解一个杂项字符设备驱动的开发流程。
上面讲的自旋锁,信号量和互斥锁的实现,都是使用了原子操作指令。由于原子操作会 lock,当线程在多个 CPU 上争抢进入临界区的时候,都会操作那个在多个 CPU 之间共享的数据 lock。CPU 0 操作了 lock,为了数据的一致性,CPU 0 的操作会导致其他 CPU 的 L1 中的 lock 变成 invalid,在随后的来自其他 CPU 对 lock 的访问会导致 L1 cache miss(更准确的说是communication cache miss),必须从下一个 level 的 cache 中获取。
领取专属 10元无门槛券
手把手带您无忧上云