因而内核提供了两个调度器主调度器,周期性调度器,分别实现如上工作, 两者合在一起就组成了核心调度器(core scheduler), 也叫通用调度器(generic scheduler).
| 导语本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,本篇是中篇(主要讲抢占和时钟),上篇请看(CPU和中断):Linux调度系统全景指南(上篇),调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
在Linux内核中,为了兼容原有的代码,或者符合某种规范,并且还要满足当前精度日益提高的要求,实现了多种与时间相关但用于不同目的的数据结构:
之前我写过一篇分析 O(1)调度算法 的文章:O(1)调度算法,而这篇主要分析 Linux 现在所使用的 完全公平调度算法。
硬件架构 从硬件架构图中可以看出以下特点: 每个 CPU 核都包含各自的 local timer,相互独立。 每个 local timer 都支持中断的产生,中断类型为 PPI,即 CPU 的私有中断,GIC 负责分发到指定的 CPU,这些中断都可以用来产生系统事件。local timer的中断为以下四种: Secure Physical Timer event (ID 29,也就是上面device node中的13,29 = 16 + 13) Non-secure Physical Timer even
本文主要讨论在高实时要求、高效能计算、DPDK等领域,Linux如何让某一个线程排他性独占CPU;独占CPU涉及的线程、中断隔离原理;以及如何在排他性独占的情况下,甚至让系统的timer tick也不打断独占任务,从而实现最低的延迟抖动。
本节我们先来学习Linux早期的调度算法的设计,先从最早的调度器算法开始,此调度器时间复杂度是O(n),所以也可以称为O(n)调度算法。我们选择的内核版本是linux-2.4.19。
内核的调度操作分为触发和执行两个部分,触发时仅仅设置一下当前进程的TIF_NEED_RESCHED标志,执行的时候则是通过schedule()函数来完成进程的选择和切换。当前进程的thread_info->flags中TIF_NEED_RESCHED位表示需要调用schedule()函数进行调度。内核在两种情况下会设置该标志,一个是在时钟中断进行周期性的检查时,另一个是在被唤醒进程的优先级比正在运行的进程的优先级高时。
在上面工作方式下,Linux 2.6.16 之前,内核软件定时器采用timer wheel多级时间轮的实现机制,维护操作系统的所有定时事件。timer wheel的触发是基于系统tick周期性中断。
本篇主要是记录将LVGL移植到百问网STM32MP157开发板上,并且仅是跑一下LVGL的一些例程。
目前DragonOS的时间子系统,更新墙上时间其实是直接在时钟中断里面,调用update walltime,并且手动指定delta值来更新的。这导致了没法利用上时间子系统的校时相关的功能。并且,时间源并不一定是有时钟事件的。因此我最近在尝试把dragonos移植到云服务器的过程中,发现kvm-clock是没有时钟中断的,并且配置acpi pm timer的中断的教程/文档,我看了很久看不明白(后来是发现Linux的acpi_sci_ioapic_setup这个函数设置了acpi中断,但是目前dragonos里面实现它,难度还是有的)。
作者简介: 程磊,一线码农,在某手机公司担任系统开发工程师,日常喜欢研究内核基本原理。 一、时间概念解析 1.1 时间使用的需求 1.2 时间体系的要素 1.3 时间的表示维度 1.4 时钟与走时 1.5 时间需求之间的关系 二、时间子系统的硬件基础 2.1 时钟硬件类型 2.2 x86平台上的时钟 2.3 ARM平台上的时钟 三. 时间子系统的软件架构 3.1 系统时钟的设计 3.2 系统时钟的实现 3.3 动态tick与定时器 3.4 用户空间API的实现 四. 总结回顾 一、时间概念解析 我们住在空间
PHP 的协程高性能网络通信引擎,使用 C/C++ 语言编写,提供了多种通信协议的网络服务器和客户端模块。
进互联网公司操作系统和网络库是基础技能,面试过不去的看,这里基于嵌入式操作系统分几章来总结一下任务调度、内存分配和网络协议栈的基础原理和代码实现。
SUSE Labs 团队探索了 Kernel CPU 隔离及其核心组件之一:Full Dynticks(或 Nohz Full),并撰写了本系列文章:
进程优先级 Linux内核中进程优先级一般分为动态优先级和静态优先级,动态优先级是内核根据进程的nice值、IO密集行为或者计算密集行为以及等待时间等因素,设置给普通的进程;静态优先级是用户态应用设置给实时进程。在调度中静态优先级的进程优先级更高。 一般应用分为IO密集型和计算密集型;I/O密集型是进程执行I/O操作时候等待资源或者事件时候,数据读取到后恢复进程的运行,这样基本出于等待IO和运行之间进行交替,由于具有这样的特性,进程调度器通常会将短的CPU时间片分配给I/O密集型进程。计算密集型是进
第一就是获取当前时间,就像人想知道时间时看墙上挂的时钟一样,简称clock,如time()/ftime()/gettimeofday()/data()等这些系统调用,都是软件主动获取时间。
前面已经讲过Celery做定时任务的场景,现在分享另一个框架Apscheduler。Apscheduler的全称是Advanced Python Scheduler。它是一个轻量级的 Python 定时任务调度框架。同时,它还支持异步执行、后台执行调度任务。本人小小的建议是一般项目用APScheduler,因为不用像Celery那样再单独启动worker、beat进程,而且API也很简洁。
多核CPU现在很常见,那么问题来了,一个程序在运行时,只在一个CPU核上运行?还是交替在多个CPU核上运行呢?Linux内核是如何在多核间调度进程的呢?又是内核又是CPU核,两个核有点绕,下面称CPU处理器来代替CPU核。
1、Elasticsearch异常停止,Kibana无法连接到Elasticsearch log [11:49:18.892] [warning][admin][elasticsearch] No living connections log [11:49:18.894] [warning][admin][elasticsearch] Unable to revive connection: http://node1:9200/ log [11:49:18.894] [war
电源管理(Power Management)在 Linux Kernel 中,是一个比较庞大的子系统,涉及到供电(Power Supply)、充电(Charger)、时钟(Clock)、频率(Frequency)、电压(Voltage)、睡眠/唤醒(Suspend/Resume)等方方面面。
FreeRTOS里面有很多个链表,这些链表分为三类:就绪列表、暂停列表、Delay链表。
George Varghese 和 Tony Lauck 1996 年的论文:Hashed and Hierarchical Timing Wheels: data structures to efficiently implement a timer facility提出了一种定时轮的方式来管理和维护大量的Timer调度算法.Linux 内核中的定时器采用的就是这个方案。
负载是查看 Linux 服务器运行状态时很常用的一个性能指标。在观察线上服务器运行状况的时候,我们也是经常把负载找出来看一看。在线上请求压力过大的时候,经常是也伴随着负载的飙高。
最简单的方式,在循环里放入要执行的任务,然后sleep一段时间再执行。缺点是,不容易控制,而且sleep是个阻塞函数
惠伟:linux time和kvm time虚拟化综述zhuanlan.zhihu.com
提示:公众号展示代码会自动折行,建议横屏阅读 摘要 本文(有码慎入)主要介绍Linux任务调度相关的发展历史和基本原理。多年以来,内核界的黑客们一直着力于寻找既能满足高负载后台任务资源充分利用,又能满足桌面系统良好交互性的调度方法,尽管截至到目前为止仍然没有一个完美的解决方案。本文希望通过介绍调度算法的发展历程,因为任务调度本身不是一个局限于操作系统的话题,包括数据库,程序语言实现等,都会与调度相关。本文在介绍过程中,会引用Linux的代码实现作为说明,同时阐述其中的一些趣闻轶事。 调度实体 进程任务通常包
在这篇中遗留了几个问题,先尝试回答一下,不一定准确,代码太多,看不过来,全靠猜测,代码的历史很长,都是智慧的结晶,一时半会消化不了很正常。
出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章。本文也可以作为检验基础知识的指标,另外文章涵盖了一个系统的方方面面。如果没有完善的计算机系统知识,网络知识和操作系统知识,文档中的工具,是不可能完全掌握的,另外对系统性能分析和优化是一个长期的系列。
转载请注明出处:帘卷西风的专栏(http://blog.csdn.net/ljxfblog)
我们使用nodejs写好了程序之后,要是想对该程序进行性能分析的话,就需要用到profile工具了。
我其实并不想讨论微内核的概念,也并不擅长去阐述概念,这是百科全书的事,但无奈最近由于鸿蒙的发布导致这个话题过火,也就经不住诱惑,加上我又一直比较喜欢操作系统这个话题,就来个老生常谈吧。
任务被taskSpawn()创建或taskActivate()激活后,直接进入Ready队列。但实际运行时,任务大部分时间处于其它状态,并不是Ready态,不然CPU的占用率就很高了,功耗也就上去了,那肯定是软件架构的设计出问题了。
我们或许经常听说过内核抢占,可是我们是否真正理解它呢?内核抢占和抢占式内核究竟有什么关系呢?抢占计数器究竟干什么用?... 本文我们就来好好讨论下,关于内核抢占的一些技术细节,力求让大家理解内核抢占。
当Tick中断累加Tick值,到达tA的时候,就会把定时器任务从DelayList放到ReadyList
很多时候,手机发热发烫。是因为CPU使用率过高,CPU过于繁忙,会导致手机无法响应用户,整体性能降低,用户体验会很差,也容易引起ANR等一些列问题
Winform控件是Windows Forms中的用户界面元素,它们可以用于创建Windows应用程序的各种视觉和交互组件,例如按钮、标签、文本框、下拉列表框、复选框、单选框、进度条等。开发人员可以使用Winform控件来构建用户界面并响应用户的操作行为,从而创建功能强大的桌面应用程序。
对于一个复杂的软件系统,定时器的对任务的管理和调度至关重要,通常定时器的管理已成为一个复杂系统的重要基础设施。
请理解并分析sched_class中各个函数指针的用法,并结合Round Robin 调度算法描ucore的调度执行过程
大家好,我是文章格式越来越不修边幅、写法越来越随意的谢顶道人 --- 老李。最近有些人问老李,你是如何面对自己越来越大的年纪与自己越来越少的头发之间这种矛盾的,关于这件事儿,作为过来人的我自然是有一番心得的,不然怎么可能自称为道人?
这客户反馈每次用识别笔去识别文字的时候,启动的时候概率性会卡住大概一秒钟的时间才会有语音响起,很影响用户体验。
项目Github地址:https://github.com/cpp-main/cpp-tbox
软件意义上的定时器最终依赖硬件定时器来实现, 内核在时钟中断发生后检测各定时器是否到期 , 到期后的定时器处理函数将作为软中断在底半部执行 。实质上,时钟中断处理程序会 换起TIMER_SOFTIRQ软中断 ,运行当前处理器上到期的所有定时器。
异步的概念首先在 Web2.0 中火起来,是因为浏览器中 JavaScript 在单线程上执行,而且它还与 UI 渲染共用一个线程。这意味着 JavaScript 在执行的时候 UI 渲染和响应是处于停滞状态的。前端通过异步的方式来消除 UI 阻塞的现象。假如业务场景中有一组互不相关的任务需要完成,可以采用下面两种方式。
所以,中断函数里不能调用xTimerReset, 因为它会导致不相干的任务阻塞, 而是调用xTimerResetFromISR,因为它不会阻塞任何任务
时间轮是一种高效、低延迟的调度数据结构。其在Linux内核中广泛使用,是Linux内核定时器的实现方法和基础之一。按使用场景,大致可以分为两种时间轮:原始时间轮和分层时间轮。分层时间轮是原始时间轮的升级版本,来应对时间“槽”数量比较大的情况,对内存和精度都有很高要求的情况。延迟任务的场景一般只需要用到原始时间轮就可以了。
计算 write 耗费的时间,来比较同步写和异步写的性能差异。显示的时间应当尽量接近write操作过程所花的时间。不要将从磁盘读文件的时间计入显示结果中。
领取专属 10元无门槛券
手把手带您无忧上云