11月14日,龙芯中科在业绩说明会上表示,龙芯3A6000预计2023年上半年可以拿到样片。面向桌面应用的3A5000+7A2000,以及面向服务器应用的3C5000+7A2000两大平台完成产品化,支持产业链伙伴推出相关产品。
本文主要讨论在高实时要求、高效能计算、DPDK等领域,Linux如何让某一个线程排他性独占CPU;独占CPU涉及的线程、中断隔离原理;以及如何在排他性独占的情况下,甚至让系统的timer tick也不打断独占任务,从而实现最低的延迟抖动。
微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
兰新宇,坐标成都的一名软件工程师,从事底层开发多年,对嵌入式,RTOS,Linux和虚拟化技术有一定的了解,有知乎专栏“术道经纬”进行相关技术文章的分享,欢迎大家共同探讨,一起进步。
温馨提示,动图已压缩,流量党放心查看。CPU方面内容不多,我们顺便学点命令。本篇是《荒岛余生》系列第二篇,垂直观测CPU。其余参见:
当我们试着通过 Linux 命令 nproc 和 lscpu 了解一台计算机 CPU 级的架构和性能时,我们总会发现无法正确地理解相应的结果,因为我们会被好几个术语搞混淆:物理 CPU、逻辑 CPU、虚拟 CPU、核心、线程和 Socket 等等。如果我们又增加了超线程(不同于多线程),我们就会开始不知道计算机里面到底有多少核心,我们搞不明白为什么像 htop 这样的命令会在我们认为买的是一台单核计算机上返回拥有 8 个 CPU 的结果。这样的情况一片混乱。
曾几何时,网络处理器是高性能的代名词。为数众多的核心,强大的转发能力,定制的总线拓扑,专用的的指令和微结构,许多优秀设计思想沿用至今。Tilera,Freescale,Netlogic,Cavium,Marvell各显神通。但是到了2018年,这些公司却大多被收购,新闻上也不见了他们的身影,倒是交换芯片时不时冒出一些新秀。
什么是多线程 多线程也叫并发编程,那么在写多线程之前,我们先来了解一下并发编程的基础概念。 ①CPU核心数和线程数的关系 核心即CPU,多核就是将多个CPU集成到一个芯片内,每个处理器都是单独的,核心数和线程数是一比一的关系,Interl使用超线程技术,将一个物理CPU模拟成两个逻辑CPU核心数和线程数实现一比二。 即如果一个4核CPU使用超线程技术,就可以同时运行8个线程,未使用超线程技术的话,则同时运行4个线程。 ②CPU时间轮转机制 也叫RR调度,可以理解为将CPU的运行时间进行切片,每一
您可能已经熟悉Linux平均负载。 平均负载是 uptime 和 top 命令显示的三个数字-它们看起来像这样:
最近腾讯云有台服务器有几次登陆的时候和以前比稍微慢了点,就用 Xshell 连接上去看了一下 CPU 的占用情况,同时观察腾讯云服务器后台的 CPU 实时监测,二者结合起来看看目前这台云服务器的运行情况如何,索性把过程写出来分享给新手,希望能帮到你们。 监测 CPU 和内存占用可以用安全狗之类的软件客户端在本地电脑实现,那样同样需要安装服务器端,会占用一些资源;不爱安装软件或者偶尔才观察一次的可以看看下面手动的办法。 首先这台云服务器用的是 lnmp1.4 的生产环境,从购买到现在有 6 个多月没重启了,这
文章已同步至GitHub开源项目: Java超神之路 master和worker 当linux启动的时候,会有两个和nginx相关的进程,一个是master,一个是worker。 master如何工作 当客户端发送请求到nginx之后,master会接收到这个请求,然后通知所有的worker进程,此时,worker会对这个请求进行争抢。某个worker抢到请求之后,就会根据设置好的步骤进行请求转发。 一个master和多个worker的好处 可以使用nginx -s reload热部署。
目前大多数CPU都支持浮点运算单元FPU,FPU作为一个单独的协处理器放置在处理器核外,但是对于嵌入式处理器,浮点运算本来就少用,有些嵌入式处理器就会去掉浮点协处理器。
一、 引入 随着TIG阿基米德平台全面应用。组成京东容器生态技术栈的分布式域名解析服务ContainerDNS(go版https://github.com/tiglabs/containerdns )全量生产环境应用,承载着每天百亿的访问量,单实例峰值每秒请求达到15W QPS,已经接近ContainerDNS的性能极限(17W QPS)。为了更好的提高系统的并发服务,对ContainerDNS 的优化也势在必行。 本文对ContainerDNS性能优化思考和技术实践历程,希望对业内在容器领域和域名解析方
KVM是指基于Linux内核(Kernel-based)的虚拟机(Virtual Machine)。KVM最大的好处就在于它是与Linux内核集成的,所以速度很快。KVM的宿主操作系统必须是Linux,支持的客户机操作系统包括Linux、Windows、Solaris和BSD,运行在支持虚拟化扩展的x86和x86_64硬件架构上,cpu支持VT技术。
本章分为两节,第一节介绍数据平面开发套件DPDK(Data Plane Development Kit)的基础知识,第二节介绍DPDK盒子的使用方法。 一、DPDK简介 本节首先介绍DPDK出现的行业背景,然后介绍DPDK概述、DPDK关键技术、DPDK开源代码,最后介绍DPDK Lib库。 1.1 DPDK背景 在过去10年里,以太网接口技术也经历了飞速发展。从早期主流的10Mbit/s与100Mbit/s,发展到千兆网(1Gbit/s)。到如今,万兆(10Gbit/s)网卡技术成为数据中心服务器的主流
本文主要介绍了我在阅读《深入浅出DPDK》,《DPDK应用基础》这两本书中所划下的知识点
物理CPU 物理CPU就是计算机上实际配置的CPU个数。在linux上可以打开cat /proc/cpuinfo 来查看,其中的physical id就是每个物理CPU的ID,你能找到几个physical id就代表你的计算机实际有几个CPU。在linux下可以通过指令 grep ‘physical id’ /proc/cpuinfo | sort -u | wc -l 来查看你的物理CPU个数
进程是一个非常重要的概念,我们都知道,操作系统合理地组织、调度计算机的工作与资源。而在引入线程前,进程是操作系统进行资源分配和调度的基本单位。所以,探究Linux进程以及与进程有关的检测与控制是非常有意义的。这次内容如下。
萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
POSIX 是为了让应用可以同时在不同 UNIX 操作系统上运行而制定的一套标准的操作系统 API。
最近,谷歌云发布ARM主机的消息传来,推出采用Ampere处理器的Tau T2A实例。至此,前几大公有云厂商都推出了ARM云主机。
性能测试中当我们尝试使用 Linux 命令(如 nproc 或 lscpu )了解服务器CPU架构和性能参数时,我们经常发现我们无法正确解释其结果,因为我们混淆CPU、物理核、逻辑核概念等术语。
内存是个明眼人,开门见山的问道:“进程啊,最近遇到啥问题了?我看你最近情绪有点低落,有啥问题你就直接说出来嘛,我让大家伙儿来一起帮你想想办法。”
作为资源管理的核心部分,OS的线程调度器必须保持下面这样简单,不变的特性: 确保ready状态的线程总是被调度到有效的CPU核上。虽然它看起来是简单的,我们发现这个不变性在Linux上经常被打破。当ready状态的线程在runqueue中等待时,有些CPU核却还会空闲几秒。以我们的经验,这类性能方面的问题会导致重度依赖同步的应用的性能成倍的下降,针对Kernel编译会多造成高达13%的延迟,针对广泛使用的商用数据库会造成23%的吞吐量降低。传统的测试技术和调试工具对于确认和了解这类问题是无效的,因此这些问题的症状经常是难以捕获的。为了能够推动我们的调查,我们构建了新的工具来在线检测这种违反不变性的情况并且将调度行为可视化。这些工具是简单的,易于在多个kernel版本间移植的并且使用的代价很小。我们相信这些工具将成为内核开发者工具链的一部分来帮助其避免这类问题的出现。
事实证明,读过Linux内核源码确实有很大的好处,尤其在处理问题的时刻。当你看到报错的那一瞬间,就能把现象/原因/以及解决方案一股脑的在脑中闪现。甚至一些边边角角的现象都能很快的反应过来是为何。笔者读过一些Linux TCP协议栈的源码,就在解决下面这个问题的时候有一种非常流畅的感觉。
这是一篇介绍Linux调度问题的文章,源自这篇文章。文章中涉及到的一些问题可能已经得到解决,但可以学习一下本文所表达的思想和对CPU调度的理解。
主板上实际插入的cpu数量,可以数不重复的 physical id 有几个(physical id)
最近在搞Linux下性能评测,在做CPU评测时发现了个有意思的现象,因为uos系统是自带系统监视器的,在对输入法进程检测时,发现其CPU占用率为1%:
由于我们的集群服务器,对于应用上,可能不单单是部署在Linux下的,也能是.net程序。所以部分集群服务器采用Windows Server服务器。仅作为例子演示集群服务器Linux或者Windows皆可。
在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。
导语:STGW作为公司七层接入网关,在云和自研业务中承担多种网络协议接入与转发的功能,由于业务数量庞大、接入形式多样、网络环境复杂,会遇到一些很有挑战的疑难杂症。某次业务出现了流量突然下降,此时用户侧也有延迟上升和重试增多的问题。在团队自研的秒级监控助力下,我们从CPU软中断热点入手追查,发现了内核listen port哈希机制存在消耗过高问题,但热点只出现在部分核心上,接着在网卡多队列、内核Receive Packet Steering(RPS)上发现了负载均衡策略的缺陷,找出最终原因后我们在硬件和
从拿到Z423的那一刻起,我一直在想,怎么才能榨干它的全部性能呢?仅仅是用来跑一些docker项目嘛?这或许未免有点太屈才了。思来想去想到一个最极致的方式,那便是AI绘画了。恰好近两年又是AI绘图的元年,而Z423的AMD 5825U恰好又是一颗8核16线程的cpu,如果用来画图会是什么效果呢?
如果我们的能源是无限制的,那可能也不需要做现在这样复杂的电源管理控制,尤其是在嵌入式设备如手机上,在追求极致性能的同时,还要追求续航时间,二者是一对相互约束的矛盾体,需要软硬件紧密配合以满足用户越发苛刻的性能和功耗的需求。
Java线程使用技巧学习(二) 进阶篇 3.线程本地存储 这个和前面提到的两个略有不同。ThreadLocal是在Thread类之外实现的一个功能(java.lang.ThreadLocal),但它会为每个线程分别存储一份唯一的数据。正如它的名字所说的,它为线程提供了本地存储,也就是说你所创建出来变量对每个线程实例来说都是唯一的。和线程名,线程优先级类似,你可以自定义出一些属性,就好像它们是存储在Thread线程内部一样,是不是觉得酷?不过先别高兴得太早了,有几句丑话得先说在前头。 创建T
提到CPU核数,相信绝大部分的开发同学想到的都是top命令,直接到自己的服务器上看一下是多少个核。看到的核越多,貌似笑的越开心。比如说说我的CPU,用top命令展开以后,看到了有24核。
写的是Zynq 7000系列的,arm有两个核。主要有AMP和SMP两种方式,SMP是两个核运行一个操作系统,跑LINUX的话,使能SMP,资源会自动分配给两个核运行。AMP是两个核独立运行,每个核可以运行操作系统也可以裸机运行。
查看linux系统内核版本 uname -a # Linux iZ8vbcsg5lal7crq11jflxziz23yZ 4.18.0-193.14.2.el8_2.x86_64 #1 SMP Sun Jul 26 03:54:29 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux uname -r # 4.18.0-193.14.2.el8_2.x86_64 cat /proc/version # Linux version 4.18.0-193.14.2.el8_2.x8
树莓派由注册于英国的慈善组织“Raspberry Pi 基金会”开发,Eben·Upton/埃·厄普顿为项目带头人。2012年3月,英国剑桥大学埃本·阿普顿(Eben Epton)正式发售世界上最小的台式机,又称卡片式电脑,外形只有信用卡大小,却具有电脑的所有基本功能,这就是Raspberry Pi电脑板,中文译名”树莓派”。
这个服务器一共有64个逻辑CPU,也就是我们常说的线程数,也就说每个核可以提供两个线程。
最近在开发一个项目,需要用到高精度的延时机制,设计需求是 1000us 周期下,误差不能超过 1%(10us)。
最近在研究Linux系统负载的时候,接触到一些关于CPU信息查看的知识,和大家分享一下。通过对/proc/cpuinfo文件中的参数的分析,也学到了不少东西。
首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环。 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时
查看linux系统内核版本 uname -a # Linux iZ8vbcsg5lal7crq11jflxziz23yZ 4.18.0-193.14.2.el8_2.x86_64 #1 SMP Sun Jul 26 03:54:29 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux uname -r # 4.18.0-193.14.2.el8_2.x86_64 cat /proc/version # Linux version 4.18.0-193.14.2.el8_2.x86
白嘉庆,西邮陈莉君教授门下研一学生。曾在华为西安研究所任C++开发一职,目前兴趣是学习Linux内核网络安全相关内容。
很多架构师都是从软件开发成长起来的,大家在软件领域都有很深的造诣,大部分人对硬件接触的很少。而成为架构师后需要频繁的跟人 、硬件 、软件 、网络打交道,本篇文章就给大家带来服务器硬件方面的相关知识,主要包括服务器、CPU、内存、磁盘、网卡。
2)显示系统名、节点名称、操作系统的发行版号、操作系统版本、运行系统的机器 ID 号
7月4日,2022 CUDA on Arm Platform线上训练营开始第一天的课程。 第一天的课程,NVIDIA开发者社区何琨老师重点讲解: 基于Arm的Jetson开发环境介绍,Arm Linux系统简介(1.1理论课+实验课) 介绍实验平台,介绍Linux编译的基本技巧,介绍基本的开发环境。实验课:Makefile 编写规范。 GPU架构及异构计算(1.2) 介绍GPU架构以及异构计算的基本原理 介绍GPU硬件平台 介绍基于Arm的嵌入式平台GPU架构和编程模型之间的关系,介绍
领取专属 10元无门槛券
手把手带您无忧上云