zabbix_agentd [10555]: cannot create Semaphore: [28] No space left on device
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
事情是这样的,新装了一套 Linux 环境下的 19.9 RAC 环境,应用方要求关闭归档。本身此机器上有三个实例,均是近期新建的实例并安装 RU 19.9,先将节点二的实例关闭然后在节点一上关闭归档,前两个实例都完成了且正常启动,当第三个实例关闭归档时,在节点一上是正常启动了,但是在节点二启动数据库则报错了,如下图:
突然间发现zabbix 挂了,咋发现的呢?报警的世界突然安静了,你就会觉得不妥了。这是运维人员的通病,有报警嫌烦,没报警心里会不安。 1,图形界面上确实显示zabbix server is not running 2,排查zabbix server 日志 tail /var/log/zabbix/zabbix_server.log 发现有如下报警:
信号量(semaphore)本质上是一个计数器,用于多进程对共享数据对象的读取,它和管道有所不同,它不以传送数据为主要目的,它主要是用来保护共享资源(信号量也属于临界资源),使得资源在一个时刻只有一个进程独享。 在信号量进行PV操作时都为原子操作(因为它需要保护临界资源)。
管道是一种特殊的文件,它不属于某一种文件系统,而是一种独立的文件系统,是只存在于内存中的文件,本质是内核的一块缓冲。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。管道是单向的、先进先出的、无结构的、固定大小字节流,它把一个进程的标准输出和另一个进程的标准输入连接在一起。
信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
6) bool __blk_end_request_cur(struct request *rq, int error)
在 Linux 内核 中 , " 进程控制块 " 是通过 task_struct 结构体 进行描述的 ; Linux 内核中 , 所有 进程管理 相关算法逻辑 , 都是基于 task_struct 结构体的 ;
无名管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系一般指的是父子关系。无明管道一般用于两个不同进程之间的通信。当一个进程创建了一个管道,并调用fork创建自己的一个子进程后,父进程关闭读管道端,子进程关闭写管道端,这样提供了两个进程之间数据流动的一种方式。
由于Android系统是基于Linux系统的,所以有必要简单的介绍下Linux的跨进程通信,对大家后续了解Android的跨进程通信是有帮助的,本篇的主要内容如下:
信号量是一种计数器,用来控制对多个进程/线程共享的资源进行访问。常和锁一同使用。 在某个进程/线程正在对某个资源进行访问时,信号量可以阻止另一个进程/线程去打扰。 生产者和消费者模型是信号量的典型使用。
当我们对Oracle进行安装部署时,需要按照相关要求修改OS内核参数,下面对Oracle按照部署时需要修改的相关内核参数进行简单介绍。
进程间通信(interprocess communication,简称 IPC)指两个进程之间的通信。系统中的每一个进程都有各自的地址空间,并且相互独立、隔离,每个进程都处于自己的地址空间中,因此相互通信比较难,Linux 内核提供了多种进程间通信的机制。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
信号量,或称信号灯,其原理是一种数据操作锁的概念,本身不具备数据交换的功能,它负责协调各个进程,保证保证两个或多个关键代码段不被并发调用,确保公共资源的合理使用。信号量分为单值和多值两种。
Oracle 不同平台的数据库安装指导为我们部署Oracle提供了一些系统参数设置的建议值,然而建议值是在通用的情况下得出的结论,并非能完全满足不同的需求。使用不同的操作系统内核参数将使得数据库性能相差甚远。本文描述了linux下几个主要内核参数的设置,供参考。
该函数的每次都用都返回两次,在父进程中返回的是子进程的PID,在子进程中返回的是0.该返回值是兴许代码推断当前进程是父进程还是子进程的根据。
Linux下进程间通信-共享内存 – 码到城攻共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式
在计算机科学和软件工程中,多线程编程是一项关键技能,尤其在当今多核处理器和高并发应用程序的背景下显得尤为重要。本文将全面探讨Linux环境下的线程编程,涵盖基本概念、线程创建与管理、线程同步、性能优化以及实际应用,通过详细的C++示例代码帮助读者深入理解并掌握这一技术。
过去,当一个信号被发送后,除了知道发生了一个信号之外,处理函数对于发生了什么一无所知。现在内核可以给处理函数提供大量的上下文,甚至信号能传递用户定义的数据,跟后来更高级的IPC通信机制一样。
本篇来介绍信号量与PV原语的一些知识,并介绍其在前趋图上的应用分析。本篇的知识属于操作系统部分的通用知识,在嵌入式软件开发中,同样会用到这些知识。
一、功能上的区别 posix和system v有什么区别/?现在在应用时应用那一标准 浮云484212 | 浏览 243 次 2014-11-06 10:36 2014-11-19 22:36 最佳答案 它们是有关信号量的两组程序设计接口函数。POSIX信号量来源于POSIX技术规范的实时扩展方案(POSIX Realtime Extension),常用于线程;system v信号量,常用于进程的同步。这两者非常相近,但它们使用的函数调用各不相同。前一种的头文件为semaphore.h,函数调用为sem_
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
在多任务操作系统中,不同的任务之间需要同步运行,信号量功能可以为用户提供这方面的支持。信号量(Semaphore)是一种实现任务间通信的机制,实现任务之间同步或临界资源的互斥访问。
信号量同样是RTOS学习中很重要的一节,信号量可以用在共享资源或者同步任务中,对执行权的控制,谁拥有信号量谁拥有执行权,在freeRTOS中信号量和互斥量有点不同,关于信号量的更多描述可以参考官网相关网页描述。每一个信号量都需要少量的内存来保持信号量的状态,那么这内存是如何分配的呢,这根据使用的API函数会有所不同,创建信号量主要有xSemaphoreCreateBinary()和xSemaphoreCreateBinaryStatic() ,使用前者创建信号量,则所需的内存将会自动从freeRTOS的堆上
通过对线程与线程控制的相关知识点的编程学习和锻炼,培养学生们对线程相关实例问题的分析与解决能力。
提示segmet的含义是get a semaphore set identifier,即获取一个信号量集标识符。说明此错误可能和未获得信号量有关,No space left on device不是指存储空间,而是指信号量资源。
1.初始化信号量 函数原型:int sem_init(sem_t* sem,int pshared,unsigned int value) 参数: sem:指定是哪一个信号量 pshared:指定信号量的类型,值为0表示是在当前进程使用的局部信号量,否则该信号量就可以在多个进程中共享。 value:指定信号量的初始值,可以理解为最多由多少个线程可以访问共享资源。 返回值:
匿名管道通信 认识管道 匿名管道 匿名管道测试 管道的四种情况 管道的五种特性 管道的读写规则
两个进程的PCB创建虚拟地址空间然后映射到物理内存中,每个进程因为是独立的,所以在物理内存中的地址也不同。 那么共享内存是怎么做到的呢? 首先先在物理内存中申请一块内存。 然后讲这块内存通过页表映射分别映射到这两个进程的虚拟地址空间内,让这两个进程都能看到这块内存。(这里也称为进程和共享内存挂接) 最后如果不想通信了:
本文介绍了Linux信号量、POSIX信号量、Linux条件变量和Linux线程同步基本概念,并通过代码示例展示了如何使用这些技术进行线程同步。
在日常工作/学习中,读者可能会经常听到如下一些词:“作业”,“任务”,“开了几个线程”,“创建了几个进程”,“多线程”,“多进程”等等。如果系统学习过《操作系统》这门课程,相信大家对这些概念都十分了解。但对很多电子、电气工程专业(或是其他非计算机专业)的同学来说,由于这门课程不是必修课程,我们脑海中可能就不会有这些概念,听到这些概念的时候就会不知所云,不过没有关系,先让我们克服对这些概念的恐惧。比如小时候刚开始学习数学的时候,先从正整数/自然数开始学习,然后逐步接触到分数、小数、负数、有理数、无理数、实数,再到复数等等。这些操作系统中的概念也是这样,让我们从初级阶段开始学起,逐步攻克这些新概念背后的真正含义。
但是并不是非常完美,因为多线程常常伴有资源抢夺的问题,作为一个高级开发人员并发编程那是必须要的,同时解决线程安全也成了我们必须要要掌握的基础
线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。 为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 使用多线程的理由之一是和进程相比,它是一种非常”节俭”的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种”昂贵”的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。 使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。 除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点: 1) 提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。 2) 使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。 3) 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。 下面我们先来尝试编写一个简单的多线程程序。
生产者消费者模型(CP模型)是一种非常经典的设计,常常出现在各种 「操作系统」 书籍中,深受教师们的喜爱;这种模型在实际开发中还被广泛使用,因为它在多线程场景中是十分高效的!
信号量是并发编程中常见的一种同步机制,在需要控制访问资源的线程数量时就会用到信号量,关于什么是信号量这个问题,我引用一下维基百科对信号量的解释,大家就明白了。
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
想必各位读者在看了昨天的文章分享之后,大概对线程有了一个比较清楚的认识了,但是昨天讲的东西过于纯理论化,所以在昨天的基础上,今天我们就来进行实战演练,做到活学活用,废话不多说,直接开干吧。
在Oracle中,内核参数kernel.shmall、kernel.shmall、kernel.shmmni和kernel.sem分别代表什么含义?
信号量的运用环境与互斥锁一样,但是信号量比互斥锁增加灵活,互斥锁只有两个状态(开锁和解锁),而信号量本质上是一个计数器,它内部有一个变量计数信号值,可以保护一个资源可以同时被1个或者2个或者3个线程同时使用,如果信号量的值只是设置1(状态只有0和1),那么和互斥锁就是一样的功能。
信号量是最早出现的用来解决进程同步与互斥问题的机制(也可实现进程通信),包括一个称为信 号量的变量及对它进行的两个原语操作。信号量为一个整数,我们设这个信号量为:sem。很显然,我们规定在sem大于等于零的时候代表可供并发进程使用的 资源实体数,sem小于零的时候,表示正在等待使用临界区的进程的个数。根据这个原则,在给信号量附初值的时候,我们显然就要设初值大于零。
一、课程介绍 UNIX/Linux环境C语言,借助学习操作系统的接口的方法来学习、理解操作系统的 运行机制以及一些网络协议 C/C++、数据结构和算法 与平台无关,重点是算法逻辑 Uinx/Linux/Android/IOS 平台相关,系统接口 嵌入式/驱动/移植 硬件相关,硬件接口
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
这篇是进程线程的博文的最后一篇了,至此进程线程的所有同步内容已经全部回顾完了。 其中信号和信号量看起来名字很像,实际上却是完全不一样的两个东西,信号和信号量在进程线程中都可以使用。而且使用方式也基本完全一样。 进程中的共享内存,线程中的互斥锁,条件变量。这些是独有的,但实际也能互相使用,《Unix网络编程》中对这些的总结是按需所用。 前面提到过线程回收,类似进程回收,线程回收的pthread_join也是接收子线程的销毁消息。 使用kill -l查看linux中的信号。 这次还是使用USR1
2016.9.9日下午再一次参加了CVTE的C++后台开发岗的面试,面试经历了1个小时20分钟左右的时间,被问及了很多问题,很多问题也没有回答出来,自己还是存在很多知识盲点,需要潜心复习修炼,查漏补缺。手写代码也是没做好,下次一定要坚持写出来。总体来说,这场面试的难度对我来说不简单,现将回忆起的面试题与大家分享共勉。
入门 包含了正确的头文件只能编译通过,没链接正确的库链接会报错。 一些常用的库gcc会自动链接。 库的缺省路径/lib /usr/lib /usr/local/lib 不知道某个函数在那个库可以nm -o /lib *.so | grep 函数名 man sin 会列出包含的头文件和链接的库名。 man 2 sin 2表示系统调用,3表示c库函数 一旦子进程被创建,父子进程一起从fork处被创建。 创建子进程为了争夺资源。 重定向用dup2函数 kill -l查看信号种类 pthread_mutex不跨进
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。 IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享内存、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。
管道通信方式分为无名管道和有名管道,无名通道可用于有亲缘关系进程间的通信,有名通道克服了管道没有名字的限制。
领取专属 10元无门槛券
手把手带您无忧上云