linux SIGABRT_NFKB信号通路自己写的程序启动时偶尔会被SIGABRT信号杀死。故查看下SIGABRT的用法。SIGABRT是中止一个程序,它可以被捕捉,但不能被阻塞。处理函数返回后,所有打开的文件描述符将会被关闭,流也会被flush。程序会结束,有可能的话还会coredump。当程序调用abort(3)时,该进程会向自己发送SIGABRT信号。所以,SIGABRT一般用于信号中一些关键的处理,assert失败时也
SIGSEGV,也称为分段违规或分段错误,是基于 Unix 的操作系统(如 Linux)使用的信号。它表示程序尝试在其分配的内存之外进行写入或读取,由于编程错误、软件或硬件兼容性问题或恶意攻击(例如缓冲区溢出)。
崩溃转储、内存转储、核心转储、系统转储……这些全都会产生同样的产物:一个包含了当应用崩溃时,在那个特定时刻应用的内存状态的文件。
要对一个信号进行处理(除了无法捕捉的SIGKILL和SIGSTOP),需要为其注册相应的处理函数,通过调用signal()函数可以进行注册。
Linux进程间通信(Inter-Process communication, IPC)机制通常分6种:
版权声明:本文为博主原创文章,转载请注明博客地址: https://blog.csdn.net/zy010101/article/details/83931740
信号是 Linux 进程间通信的最古老的方式。信号是软件中断,它是在软件层次上对中断机制的一种模拟。
kill 命令可以发送指定的信号到相应的进程或进程组。不指定信号缺省发送 SIGTERM(15)来终止指定进程。如果想强制终止进程,可以显示指定 SIGKILL(9) 信号,因为该信号无法被进程捕获。
我们知道在nodejs中可以使用new Worker创建线程。今天有个同学恰好问到,怎么判断创建线程成功,这也是最近开发线程池的时候遇到的问题。nodejs文档里也没有提到如何捕获创建失败这种情况。所以只能通过源码去找答案。不过坏消息是,我们无法捕获这个这个错误。下面看一下源码。我们直接从c++层开始分析。 当我们调用new Worker的时候,最后会调用c++的StartThread函数(node_worker.cc)创建一个线程。
说明: linux 的 kill 命令是向进程发送信号,kill 不是杀死的意思,-9 表示无条件退出,但由进程自行决定是否退出,这就是为什么 kill -9 终止不了系统进程和守护进程的原因
~$ kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1 64) SIGRTMAX
信号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断。
[root@VM-8-35-centos /data/server/fatp_dw_base]# kill -l
列表中,编号为1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。
一分钟,您的iOS应用程序可以在Xcode中正常运行,而下一分钟,它由于不可思议的SIGABRT错误而崩溃了。这是怎么回事!?
自己写的程序启动时偶尔会被SIGABRT信号杀死。故查看下SIGABRT的用法。
Native Crash常常发生在带有Jni代码的APP中,或者系统的Native服务中。作为比较难分析的一类问题,Native Crash其实还是有较多的方法去定位。
王竞原,负责网游刀锋铁骑项目,高级开发工程师,使用C++已有10年,非常喜欢C++,特别是C++11。希望能与广大的C++爱好者多交流。 一、什么是Android的C/C++ NativeCrash Android上的Crash可以分两种: 1、Java Crash java代码导致jvm退出,弹出“程序已经崩溃”的对话框,最终用户点击关闭后进程退出。 Logcat 会在“AndroidRuntime”tag下输出Java的调用栈。 2、Native Crash 通过NDK,使用C/C++开发,导致
当容器终止时,容器引擎使用退出码来报告容器终止的原因。如果您是 Kubernetes 用户,容器故障是 pod 异常最常见的原因之一,了解容器退出码可以帮助您在排查时找到 pod 故障的根本原因。
在linux/unix系统中,我们如果想杀死一个进程,可以使用 kill -9 PID 的方式来杀死一个进程,这种方式并不是调用了什么系统的API函数实现的,实际是给进程发送了一个 SIGKILL 信号。当进程收到这个信号后执行了一个默认的操作 Term,而这个 Term 代表的就是终止进程 (Terminate Process)。这就是一个信号最直观的应用。
程序使用etcd的election sdk做高可用选主,需要在节点意外下线的时候,主动去etcd卸任(删除10s租约), 否则已经下线的节点还会被etcd认为是leader。
当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中,这种行为就叫做 Core Dump(中文有的翻译成“核心转储”)。
上一篇文章中,我们看到了如何通过 multiprocessing 来创建子进程。 通过 multiprocessing 实现 python 多进程
信号(signal)是一种软件中断,它提供了一种处理异步事件的方法,也是进程间惟一的异步通信方式。在Linux系统中,根据POSIX标准扩展以后的信号机制,不仅可以用来通知某种程序发生了什么事件,还可以给进程传递数据。
信号是Unix和Linux系统响应某些条件而产生的一个事件。接收到该信号的进程会相应地采取一些操作。
1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。
程序在执行过程中 crash 是非常严重的问题,一般都应该在测试阶段排除掉这些问题,但是总会有漏网之鱼被带到 release 阶段。
近期接触了Linux平台的测试,遇到了软件发生异常,从而接触到了 Linux平台下的Signal——信号,用来通知进程发生了异步事件。
我们经常会使用 kill 命令杀掉运行中的进程,对多次杀不死的进程进一步用 kill -9 干掉它。你可能知道这是在用 kill 命令向进程发送信号,优雅或粗暴的让进程退出。我们能向进程发送很多类型的信号,其中一些常见的信号 SIGINT 、SIGQUIT、 SIGTERM 和 SIGKILL 都是通知进程退出,但它们有什么区别呢?很多人经常把它们搞混,这篇文章会让你了解 Linux 的信号机制,以及一些常见信号的作用。
快一个月没发博文了,之前都在深入研究php多进程tcp服务器,结果到现在也没搞出一个完美的解决方案,所以还是先发下这个月学到的东西吧
kill命令向指定的pid进程发送信号,如果不指定要发送的signal信号,则默认情况下signal是SIGTERM,它会终止进程,要列出所有可用信号,可以使用-l选项获取Linux信号列表,经常使用的信号包括HUP、INT、KILL、STOP、CONT和0,可以通过三种方式指定信号: 按数字例如-9,带有SIG前缀例如-SIGKILL,不带SIG前缀例如-KILL。负PID值用于指示过程组ID,如果传递了进程组ID,则该组中的所有进程都将接收到该信号,PID为-1是特殊的,其指示除两个以外的所有进程,kill进程本身和init即PID 1,其是系统上所有进程的父进程,将-1指定为目标会将信号发送到除这两个以外的所有进程。
在Linux中,要发送一个信号相当容易。程序员需要知道两个信息:要发送哪个信号,将这个信号发送给哪个进程。可以用 man 7 signal 找到一个可以利用的信号的列表。用户可以只将信号发送给用户自己的进程,也可以以root身份运行从而将信号发送给任意一进程。
signal包的核心是使用signal.signal()函数来预设(register)信号处理函数,如下所示:
应用层的异常,未被捕获的异常,导致程序向自身发送了 SIGABRT 信号而崩溃,是应用程序自己可控的。对于未被捕获的异常,是可以通过 try-catch 或 NSSetUncaughtExceptionHandler() 机制类捕获的。
core-dump文件,又称为核心转储,是操作系统在进程收到某些信号终止运行时,将此时进程的地址空间、进程状态以及其他信息写入到一个文件中,这个文件就是core-dump文件,其主要是为了方便开发人员调试,定位问题。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
各操作系统的信号定义或许有些不同。下面列出了POSIX中定义的信号。 在linux中使用34-64信号用作实时系统中。 命令 man 7 signal 提供了官方的信号介绍。也可以是用kill -l来快速查看 列表中,编号为1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。 Linux支持的标准信号有以下一些,一个信号有多个值的是因为不同架构使用的值不一样,比如x86, ia64,ppc, s390, 有3个值的,第一个值是slpha和sparc,中间的值是 ix86, ia64, ppc, s390, arm和sh, 最后一个值是对mips的,连字符-表示这个架构是缺这个信号支持的, 第1列为信号名; 第2列为对应的信号值,需要注意的是,有些信号名对应着3个信号值,这是因为这些信号值与平台相关,将man手册中对3个信号值的说明摘出如下,the first one is usually valid for alpha and sparc, the middle one for i386, ppc and sh, and the last one for mips. 第3列为操作系统收到信号后的动作,Term表明默认动作为终止进程,Ign表明默认动作为忽略该信号,Core表明默认动作为终止进程同时输出core dump,Stop表明默认动作为停止进程。 第4列为对信号作用的注释性说明。
无论你使用哪种操作系统,你一定会遇到某个行为失常的应用,它把自己锁死并拒绝关闭。在Linux(还有Mac),你可以用一个”kill”命令强制终结它。本篇博文中,我们将展示给你多种方式使用”kill”命令终结应用。
标红的 USR2 、WINCH ,只能通过 kill 的方式 来发送,主要是nginx 热部署的时候使用。
信号(Signal):信号是在软件层次上对中断机制的一种模拟,通过给一个进程发送信号,执行相应的处理函数。
halt命令用来关闭正在运行的Linux操作系统。halt命令会先检测系统的runlevel,若runlevel为0或6,则关闭系统,否则即调用shutdown来关闭系统。
原文链接:https://rumenz.com/rumenbiji/linux-kill.html
原文链接:https://rumenz.com/rumenbiji/linux-kill.html 微信公众号:入门小站
前一篇文章说了一下在是用Python2的情况下怎样查看运行时线程信息,今天查资料的时候发现,原来在Python3中引入了 faulthandler 模块,可以简化我们很多工作,甚至,如果不需要保持进程继续运行的情况下可以不用修改我们已有的代码。具体 faulthandler 模块的使用,可以参考: faulthandler https://docs.python.org/3/library/faulthandler.html 先准备一个小程序,就是周期性的往命令行终端输出一下时间,如下: #!/usr
在man手册中对kill命令的解释如下, 不难看出, kill命令是一个用于将指定的signal发送给进程的工具
killall是一个基于名称终止系统上运行进程的工具。kill则是终止基于进程ID号(PID)的进程。kill和killall还可以向进程发送特定的系统信号。
领取专属 10元无门槛券
手把手带您无忧上云