首先,我们知道驱动是内核的一部分,那么驱动在内核中到底扮演了什么角色呢? 设备驱动程序在内核中的角色:他们是一个个独立的“黑盒子”,使某个特定的硬件响应一个定义良好的内部编程接口,这些接口完全隐藏了设备的工作细节。(说白了,驱动程序除了对外提供特定的接口外,任何实现细节对应用程序都是不可见的。)用户的操作通过一组标准化的调用执行,而这些调用独立于特定的驱动程序。驱动程序的任务是把这些标准化调用映射到实际硬件的设备特有操作上。 在编写驱动程序时,程序员应该特别注意下面这个概念:编写访问硬件的内核代码时,不要给
单机存储引擎负责高效的组织数据、索引数据、保存数据,为上层应用提供易用的接口。有一类存储引擎为了得到更高的性能,会跨过文件系统这一层调用,直接操作裸盘。那么如何实现这类存储引擎呢?本文希望以 Ceph BlueStore 为例子,介绍一下其中的实现方法。
在写上一篇博客时,我发现我没搞清楚块设备(block device),分区(partion)和文件系统(filesystem)这几个概念之间的关系,今早查了一些资料才慢慢理解了它们之间的关系,所以我想写出来,看看我能不能将一个问题描述清楚.下面我依次描述设备文件,分区和文件系统这三个概念.
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/169
运维工程师(Operations)是负责维护并确保整个服务的高可用性,同时不断优化系统架构提升部署效率、优化资源利用率提高整体的ROI的专业人员。他们的基本职责是负责服务的稳定性,确保服务可以7*24H不间断地为用户提供服务。
当我们第一次使用电脑的时候,你会觉得神奇吗?为什么我们在键盘上敲击或者使用鼠标进行点击,就能实现各种操作;为什么显示器会显示出这些图标?这些用户操作的背后,是谁在同一管理他们呢?
2.一个不错的中文Linux手册:http://cpp.ezbty.org/manpage
在学习和使用计算机的过程中基本绕不开这样一个概念—— I/O ,也即输入/输出,指的是一切操作、程序或设备与计算机之间发生的数据传输过程。
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
从上图可以看到Linux系统将各异的设备分为三大类:字符设备,块设备和网络设备。内核针对每一类设备都提供了对应驱动模型架构,包括基本的内核设施和文件系统接口。
也就是说,在应用程序中,可以通过open,write,read等函数来操作底层的驱动。
因为在做系统升级,AOSP的recovery下有一个flash_image工具,这个工具可以在开机状态下刷写系统分区。源码位置在/bootable/recovery/mtdutils/flash_image.c。
资料中,难免会有一些错误,有任何问题,都可以在github向我提交issue。文中的勘误,我都会更新在github中。点击阅读原文可以直达github。
如果你对fork()的机制比较熟悉的话,这个题并不难,输出应该是6个“-”,但是,实际上这个程序会很tricky地输出8个“-”。
作者:陈皓 出处:https://coolshell.cn/articles/7965.html
I/O子系统概貌 VFS:内核提供不同实现文件系统的抽象,应用端一般请求到vfs,vfs在调用实际文件系统的posix语义函数,可以理解为vfs作为用户态和实际文件系统的之间的转换桥梁,为用户态提供对于底层磁盘文件系统无感知的文件系统服务层。 Page Cache: 缓存文件系统的数据,这里包括文件系统元数据和文件系统数据,在块缓存之上构建页缓存(常说的Buffer/Cache). Mapping Layer:如果内核需要从块设备上读取数据,就必须知道数据在物理设备上的位置,这个是由映射层Mappin
本文通过对Linux下串口驱动的分析。由最上层的C库,到操作系统系统调用层的封装,再到tty子系统的核心,再到一系列线路规程,再到最底层的硬件操作。
今天北亚小编为大家分享一篇《在AIX下误操作删除LV后如何最大程度挽救数据?》首先大家要知道到底是LV?PV相当于物理磁盘(对于存储,是存储映射过来的卷,对于操作系统而言,等同于物理硬盘),若干个PV组成一个VG,意味着可以将容量不同的存储空间合起来统一分配。为了实现这个目的,AIX把同一个VG的所有PV按相同大小的存储颗粒进行空间编排,这个存储颗粒就是PP。而分配空间时,以若干个PP(可能是不同PV上的),做为使用集合,这个集合就是LV。
廖威雄,就职于珠海全志科技股份有限公司,负责Linux IO全栈研发、性能优化、开源社区开发交流、Linux 内核开源社区pstore/blk,mtdpstore模块的作者(与maintainer交流中)、大客户存储技术支持、全志首个UBI存储方案主导人、全志首个RTOS NFTL主导人。
我们之前的文章提到了操作系统的三个抽象,它们分别是进程、地址空间和文件,除此之外,操作系统还要控制所有的 I/O 设备。操作系统必须向设备发送命令,捕捉中断并处理错误。它还应该在设备和操作系统的其余部分之间提供一个简单易用的接口。操作系统如何管理 I/O 是我们接下来的重点。
传统虚拟化技术与容器技术对比 1、传统的虚拟化技术 传统的虚拟化技术会在已有主机的基础上创建多个虚拟主机,然后在每个虚拟主机上安装独立的操作系统,并由虚拟主机的内核空间和用户空间来运行应用程序
1. 块设备(block devices):块设备是一个能存储固定大小块信息的设备,它支持以固定大小的块,扇区或群集读取和(可选)写入数据。每个块都有自己的物理地址。通常块的大小在 512 - 65536 之间。所有传输的信息都会以连续的块为单位。块设备的基本特征是每个块都较为对立,能够独立的进行读写。常见的块设备有 硬盘、蓝光光盘、USB 盘
访问下载页面,根据您想要的启动方式,获取 ISO 文件或网络启动映像,以及相应的GnuPG签名。
块设备驱动块是Linux下3大设备驱动框架之一,块设备主要是针对存储类型的设备设计的驱动,配合文件系统完成数据存储。在应用层的cp、cd、touch、vim、mount等等可以操作文件,可以操作目录的命令都会通过文件系统,通过块设备驱动完成对底层存储设备的访问,实现数据读取或者写入。
在 Linux 操作系统中,有许多命令可用于管理和查看存储设备。其中,lsblk 和 blkid 是两个常用的命令,用于显示和识别块设备及其相关信息。本文将详细介绍如何使用 lsblk 和 blkid 命令来管理和获取关于块设备的有用信息。
Linux系统文件操作主要是通过块设备驱动来实现的。 块设备主要指的是用来存储数据的设备,类似于SD卡、U盘、Nor Flash、Nand Flash、机械硬盘和固态硬盘等。块设备驱动就是用来访问这些存储设备的,其与字符设备驱动不同的是:
学习步骤如下: 1、Linux 基础 安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统 能够熟练使用Linux系统的基本命令 认识Linux系统的常用服务安装Linux操作系统 Linu
当你发现 Linux 服务器上的系统性能问题,在最开始的 1 分钟时间里,你会查看哪些系统指标呢? Netflix 在 AWS 上有着大规模的 EC2 集群,以及各种各样的性能分析和监控工具。 比如我
IO体系结构是什么样的? 系统如何判断设备数据是否就绪方式? 目前系统判断设备上的数据是否就绪采用了轮询和中断两种方式。轮询方式是不断的重复询问设备上的数据是否可用,如果可用,CPU就读取数据;中断方式中系统为每个CPU提供了中断线,可由各个系统设备共享。每个中断通过一个唯一的标识,内核对使用的每个中断提供一个中断服务。中断将暂停正常系统工作,在外设的数据已经就绪,需要由内核或者应用处理,外设会引发一个中断,系统就不需要频繁检查是否有新的数据可用,外设有新数据的情况会自动通知系统。 内核如何管理磁盘设备
" l " 表示链接文件 , 类似于快捷方式 , 链接文件分为 软链接文件 和 硬链接文件 , 软链接 是 符号链接 , 只包含了一个路径 , 可以链接任意文件目录 或 不存在的文件 , 链接自己也可以 ; 硬链接 只能是 已存在的文件 , 不能是目录 ;
众所周知,Linux内核主要包括三种驱动模型,字符设备驱动,块设备驱动以及网络设备驱动。
中的lsblk 用于列出有关所有可用块设备的信息,但它不会列出有关RAM Disk的信息(其数据实际存储在RAM内存之中)。块设备一般包括硬盘、网络存储、usb存储,光盘等
Block Layer层在整个I/O中负责承上启下,上接文件系统,下接块驱动。 我不想直接讨论代码,希望从一个架构的演变来初探一下Block Layer层。
西部数据开发了有一段时间的Zonefs已经确定要在Linux 5.6内核中登场了,这并不是一个传统意义上面的通用文件系统(比如Ext4、NTFS),而是一个针对特定硬件设备的文件系统,它为分区式存储设备进行了高度的优化。
前言: 随着Linux的版本升高,存储栈的复杂度也随着增加。作者在这里简单介绍目前Linux存储栈。 分析: 1,storage stack 在用户态,可以看到的磁盘主要有几种类型: a,/dev/
通过之前的教程,我们了解如何在Linux和Windows云服务器下挂载和扩容云硬盘,解决了业务存储的性能扩展问题。那么,如何妥善地解决块存储的安全问题呢?这篇我们将一起探索在腾讯云上,为云硬盘做基于dm-crypto/LUKS的块设备加密的方法实践。
1、字符设备驱动: 当我们的应用层读写(read()/write())字符设备驱动时,是按字节/字符来读写数据的,期间没有任何缓存区,因为数据量小,不能随机读取数据,例如:按键、LED、鼠标、键盘等 2、块设备: 块设备是i/o设备中的一类, 当我们的应用层对该设备读写时,是按扇区大小来读写数据的,若读写的数据小于扇区的大小,就会需要缓存区, 可以随机读写设备的任意位置处的数据,例如 普通文件(.txt,.c等),硬盘,U盘,SD卡。 3、块设备结构: 段(Segments):由若干个块组成。是Linux内存管理机制中一个内存页或者内存页的一部分。 块 (Blocks): 由Linux制定对内核或文件系统等数据处理的基本单位。通常由1个或多个扇区组成。(对Linux操作系统而言) 扇区(Sectors):块设备的基本单位。通常在512字节到32768字节之间,默认512字节 应用程序进行文件的读写,通过文件系统将文件的读写转换为块设备驱动操作硬件。
当你发现 Linux 服务器上的系统性能问题,在最开始的 1 分钟时间里,你会查看哪些系统指标呢? Netflix 在 AWS 上有着大规模的 EC2 集群,以及各种各样的性能分析和监控工具。比如我们
内存是计算机系统最重要的资源之一,当操作系统内存不足时,进程申请内存将会失败,从而导致其运行异常或者崩溃。
键盘是我们最常用的输入硬件设备之一。作为程序员,你知道当我们敲击键盘上的字母"A"时,操作系统会发生什么吗?下面我将简要介绍整个过程,以便你更容易理解为什么需要这些组件。
Linux 内存管理模型非常直接明了,因为 Linux 的这种机制使其具有可移植性并且能够在内存管理单元相差不大的机器下实现 Linux,下面我们就来认识一下 Linux 内存管理是如何实现的。
通用块层是Linux中的一个重要组件,用于管理不同块设备的统一接口,减少不同块设备的差异带来的影响。它位于文件系统和磁盘驱动之间,类似于Java中的适配器模式,让我们无需关注底层实现,只需提供固定接口即可。
这三者的本质差别是使用数据的“用户”不同:块存储的用户是可以读写块设备的软件系统,例如传统的文件系统、数据库;文件存储的用户是自然人;对象存储的用户则是其它计算机软件。
在计算机的世界里,我们可以将业务进行抽象简化为两种场景——计算密集型和IO密集型。这两种场景下的表现,决定这一个计算机系统的能力。数据库作为一个典型的基础软件,它的所有业务逻辑同样可以抽象为这两种场景的混合。因此,一个数据库系统性能的强悍与否,往往跟操作系统和硬件提供的计算能力、IO能力紧密相关。
研究IO也很久了,一直无法串联bio和块设备驱动,只知道bio经过IO调度算法传递到块设备驱动,怎么过去的,IO调度算法在哪里发挥作用,一直没有完全搞明白,查看了很多资料,终于对块设备驱动有所理解,也打通了bio到块设备。
这一部分主要是用来介绍 Linux 设备驱动程序的一些基本概念,包括:Linux 设备驱动程序的作用、内核功能的划分、设备和模块的分类以及版本编号。
SSD正在迅速扩展它在数据中心中的份额,同旋转介质(HHD)相比,当前的闪存在性能、功耗和机架密度上具有明显优势,随着下一代媒介进入市场,这些优势将持续扩大。
即使看了所有的Linux 内核文章,估计也还不是很明白,这时候,还是需要fucking the code.
领取专属 10元无门槛券
手把手带您无忧上云