内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
我曾以为像定时器这样基础的功能,操作系统会有一个完备的实现。当需要开启一个定时任务的时候,会有一个优雅的、如下形式的接口:
Linux 内核通常会使用 定时器 来做一些延时的操作,比如常用的 sleep() 系统调用就是使用定时器来实现的。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/158894.html原文链接:https://javaforall.cn
硬件定时器产生的周期性中断,中断频率就是系统频率(拍率)。系统拍率可以设置,单位是HZ,可在编译内核时通过图形化界面设置,设置路径如下:Kernel Features -> Timer frequency([=y])
定时器是我们最常用到的功能,一般用来完成定时功能,本章我们就来学习一下 Linux 内核提供的定时器 API 函数,通过这些定时器 API 函数我们可以完成很多要求定时的应用。Linux内核也提供了短延时函数,比如 微秒、纳秒、毫秒延时函数,本章我们就来学习一下这些和时间有关的功能。
本文介绍了如何通过Linux内核定时器实现LED灯的闪烁,从硬件的配置、驱动程序以及示例代码方面进行了详细的阐述。通过申请GPIO、配置GPIO、编写驱动程序以及添加设备到内核和加载设备,最终实现了LED灯的闪烁。
第一就是获取当前时间,就像人想知道时间时看墙上挂的时钟一样,简称clock,如time()/ftime()/gettimeofday()/data()等这些系统调用,都是软件主动获取时间。
当Tick中断累加Tick值,到达tA的时候,就会把定时器任务从DelayList放到ReadyList
网络编程中超时时间是一个重要但又容易被忽略的问题,对其的设置需要仔细斟酌。在经历了数次物理机宕机之后,笔者详细的考察了在网络编程(tcp)中的各种超时设置,于是就有了本篇博文。本文大部分讨论的是socket设置为block的情况,即setNonblock(false),仅在最后提及了nonblock socket(本文基于linux 2.6.32-431内核)。
进程是一个动态的实体,满足条件的情况下,他一直在执行,但是有时候,进程需要条件得不到满足的时候,他就会被挂起。但这是被动的,不是进程控制的,也就是说,进程访问一个资源的时候,如果不能被满足,进程会被系统挂起,等到条件满足的时候,系统会唤起进程。
在检测海外服务器日志的时候,发现脚本启动时间与定时任务设定的时间不一致,现进行问题排查。
在进行堵塞式系统调用时。为避免进程陷入无限期的等待,能够为这些堵塞式系统调用设置定时器。Linux提供了alarm系统调用和SIGALRM信号实现这个功能。
TCP协议仅定义框架,也就是发送端和接收端需要遵循的“规则”。TCP协议的实现经过多年的改进,有了多个不同的版本。比较重要的有Tahoe、Reno、NewReno、SACK、Vegas等,有些已经成为了影响广泛的RFC文档,有些则成为了Unix/Linux操作系统的标准选项。
操作系统的定时器原理是,操作系统维护了一个定时器节点的链表,新增一个定时器节点时,设置一个jiffies值,这是触发定时中断的频率。linux0.11版本里是1秒触发100次,即10毫秒一次。加入新增一个定时器的jiffies值是2,那经过两次定时中断后就会被执行。jiffies值在每次定时中断时会加一。
在上面工作方式下,Linux 2.6.16 之前,内核软件定时器采用timer wheel多级时间轮的实现机制,维护操作系统的所有定时事件。timer wheel的触发是基于系统tick周期性中断。
惠伟:linux time和kvm time虚拟化综述zhuanlan.zhihu.com
今天下午的时候,我看到来自于大洋彼岸的短视频:一些擦腚纸贩子都在囤积居奇,高价兜售擦腚纸,看到这些消息真的是雏菊一紧。沙雕肺炎病毒全球肆虐的时候,难道不应该是买口罩保护上面的口么,怎么抢着买擦腚纸招呼下边那个眼了?算了,管不了那么多了,我也囤点儿擦腚纸得了。
这一讲中,我想和你分享一下,数组和链表结合起来的数据结构是如何被大量应用在操作系统、计算机网络,甚至是在 Apache 开源项目中的。
低分辨率定时器可以分为周期性和动态性,这里只讨论周期性。在jiffies小节中知道,linux系统会在每个时钟中断会增加jiffies的值,同时还会去处理到期的定时器。而系统时钟中断的速度取决于HZ的值,如果HZ配置为1000,则每秒会产生1000次时钟中断。如果按照样的话,是不是HZ的值越大越好,其实不然。如果HZ的值越大,则会造成系统的负载也会越大。所以HZ的值一般在每个平台是不一样的。假设HZ=250,那么系统会在每4ms会产生一个时钟中断,然后会去处理超时的定时器。但是4ms对有些设备是可以满足的,对一些要求延迟到us的设备是不满足的,所以linux设计者就推出了高精度定时器Hrtimer,所以把之前依赖HZ的值的定时器称为低分辨率定时器。
服务器端为了能流畅处理多个客户端链接,一般在某个线程A里面accept新的客户端连接并生成新连接的socket fd,然后将这些新连接的socketfd给另外开的数个工作线程B1、B2、B3、B4,这些工作线程处理这些新连接上的网络IO事件(即收发数据),同时,还处理系统中的另外一些事务。这里我们将线程A称为主线程,B1、B2、B3、B4等称为工作线程。工作线程的代码框架一般如下: while (!m_bQuit) { epoll_or_select_func(); hand
| 导语本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,本篇是中篇(主要讲抢占和时钟),上篇请看(CPU和中断):Linux调度系统全景指南(上篇),调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
软件意义上的定时器最终依赖硬件定时器来实现,内核在时钟中断发生后检测各定时器是否到期,到期后的定时器处理函数将作为软中断在底半部执行。实质上,时钟中断处理程序会换起TIMER_SOFTIRQ软中断,运行当前处理器上到期的所有定时器。定时器使用例子:按键的消抖,定时产生事件等。
需求背景: 后台业务逻辑类服务,其实现通常都会依赖其他外部服务,比如存储,或者其他的逻辑server。 有一类比较典型的问题: 假设主调方A是同步处理模型,有一个关键路径是访问B服务。 当被调服务B延迟很高时,主调方A的进程会挂起等待,导致后来的A请求也无法及时处理,从而影响整个A服务的处理能力。甚至出现A服务不可用。 当然,比较理想的是B出现过载或者故障时,A的服务能力能够降到和B同等的服务能力,而非不可用。 因此,部门会定期进行容灾演习,也期望能够验证到各个服务的"最差服务能力"。即验证被调出现较高延迟
HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
我们看到中断的时候执行了do_timer函数,该函数就是处理定时器和进程调度的。在此之前我们先看看怎么新增一个定时器。
Apache JMeter™ 是 Apache 组织开发的一款开源软件,是典型的纯 Java 开发的应用程序,可以在不同平台比如Windows、Linux或macOS系统上进行软件测试。JMeter主要用于应用程序的功能负载测试以度量软件的性能,也可以用于其他类型的测试比如接口测试,API测试等。
TCP重传机制主要是为了防止网路包丢弃,重传的工作方式主要借助TCP头部中的序列号和确认号来决定是否重传,重传的触发方式主要由以下几种:
在日常工作中总会有一些定时任务的操作, 定时邮件, 定时短信, 定时脚本任务等等。
Windows开发环境:Windows 7 64bit、Windows 10 64bit
我们在使用 requests 这类网络请求第三方库时,可以看到它有一个参数叫做timeout,就是指在网络请求发出开始计算,如果超过 timeout 还没有收到返回,就抛出超时异常。(当然存在特殊情况timeout 会失效,请看Timeouts and cancellation for humans*[1] 这篇文章中作者的举例,我们不考虑这种特殊情况)。
George Varghese 和 Tony Lauck 1996 年的论文:Hashed and Hierarchical Timing Wheels: data structures to efficiently implement a timer facility提出了一种定时轮的方式来管理和维护大量的Timer调度算法.Linux 内核中的定时器采用的就是这个方案。
Linux服务器自动备份Mysql数据库 shell脚本自动备份数据库,以防止数据出错时回滚数据 shell备份脚本代码 #!/bin/bash sqlurl=数据库地址 sqlname=数据库账号 sqlpwd=密码 sqltab=数据库库名 sqlpath=/sql-back mkdir /data; cd /data; mkdir /data$sqlpath; cd /data$sqlpath datam=`date +"%Y-%m-%d"`; mkdir $datam data=`date +"%
理想状况是:按下、松开按键,各产生一次中断,也只产生一次中断。 但是对于机械开关,它的金属弹片会反复震动。GPIO电平会反复变化,最后才稳定。一般是几十毫秒才会稳定。 如果不处理抖动的话,用户只操作一次按键,会发生多次中断,驱动程序可能会上报多个数据。
收到一位读者的私信,说字节面试有这么一个问题:服务端挂了,客户端的 TCP 连接会发生什么?
平时在使用Jmeter做压力测试的过程中,由于单机的并发能力有限,所以常常无法满足压力测试的需求。因此,Jmeter还提供了分布式的解决方案。本文是一次利用Jmeter分布式对业务系统登录接口做的压力测试的实践记录。按照惯例,在正式开始前,先简单介绍一下本文大纲:
如果您使用过Windows计划任务或Linux的crontab,那么对“定时任务”这个名词可能并不陌生。简言之就是在设定好的时间去执行一个任务或者根据条件循环的执行一个或多个任务。Linux下的crontab需要通过命令行操作,有了jiacrontab就可以通过WEB界面来创建计划任务,比直接使用crontab简单很多。
无论你用任何语言或者是网络库,你都可以设置网络操作的超时时间,特别是connect,read,write的超时时间。
本项目是一个软件定时器扩展模块,可无限扩展你所需的定时器任务,取代传统的标志位判断方式, 更优雅更便捷地管理程序的时间触发时序。 项目资源下载:https://download.csdn.net/download/m0_38106923/87537818
TCP协议是一个相当复杂的协议,其实现依赖于多个定时器的实现。在TCP套接字的初始化函数tcp_v4_init_sock中,会调用tcp_init_xmit_timers初始化TCP的各个定时器。
本文说的是等级保护1.0中SQLServer数据库操作超时的内容,实际在SQLServer中有很多种超时选项,很容易将其混为一谈,本文将尽力将之说清楚。
在设计架构或涉及网络时,我们都知道网络是不可靠的,可能会发生超时、断开连接、网络分区等各种问题。这些问题对于数据传输的可靠性和稳定性产生了很大的挑战。为了解决这些问题,各个组织都设立了专门的网络部门,致力于研究和解决网络问题。
一直都有在看一些开源项目的代码,但是还没有试过提交pr。因为最近在研究websocket和keep-alive。而websocket涉及到长连接,过多无用的长连接对系统来说是负担,是否可以尽快发现对端是否已经掉线,从而释放这个连接来减少系统压力呢,就这个初衷,想通过wireshark和nodejs调试一下心跳机制,但是发现nodejs对这个的支持不是很好。tcp的心跳机制,支持三个配置,但是nodejs的setKeepAlive只支持一个配置(后面发现最新版代码里有一点支持的痕迹了,但是没有给用户提供接口),所以就产生了提交pr的想法。代码改动不大,但是整个流程走下来,也挺费时间的。 本文大致分享一下这个过程。我的诉求是想让nodejs把修改心跳机制和相关配置的接口暴露给用户。但是libuv层的接口本身就不支持这个能力。所以要解决这个问题,要修改c、c++、js的代码。因为nodejs的架构就是这样,libuv提供能力,c++套壳,js调用。所以你想加一个libuv不支持的功能时,你就得从libuv改起。
把所有的考研单词存储到数据库中,每天定时在两个时间点,上午7:30、下午6:30,将属于当天的单词发送到指定的邮箱中。一个月一遍。一年12遍,我想再笨的人也会背下来的。
nodejs是单线程执行的,同时它又是基于事件驱动的非阻塞IO编程模型。这就使得我们不用等待异步操作结果返回,就可以继续往下执行代码。当异步事件触发之后,就会通知主线程,主线程执行相应事件的回调。
领取专属 10元无门槛券
手把手带您无忧上云