我们知道,Java程序的运行需要一个运行时环境,即:JVM,启动Java进程即启动了一个JVM。 因此,所谓停止Java进程,本质上就是关闭JVM。 那么,哪些情况会导致JVM关闭呢?
一个位5年的小伙伴去某东面试被一道并发编程的面试题给Pass了,说”如何中断一个正在运行中的线程?,这个问题很多工作2年的都知道,实在是有些遗憾。
kill :发送指定的信号到相应进程。不指定信号将发送SIGTERM(15)终止指定进程。若仍无法终止该程序可用“-KILL” 参数,其发送的信号为SIGKILL(9) ,将强制结束进程,使用ps命令或者jobs 命令可以查看进程号。root用户将影响用户的进程,非root用户只能影响自己的进程。
早在LINUX2.2内核中。并不存在真正意义上的线程,当时Linux中常用的线程pthread实际上是通过进程来模拟的,也就是同过fork来创建“轻”进程,并且这种轻进程的线程也有个数的限制:最多只能有4096和此类线程同时运行。 2.4内核消除了个数上的限制,并且允许在系统运行中动态的调整进程数的上限,当时采用的是Linux Thread 线程库,它对应的线程模型是“一对一”,而线程的管理是在内核为的函数库中实现,这种线程得到了广泛的应用。但是它不与POSIX兼容。另外还有许多诸如信号处理,进程ID等方面的问题没有完全解决。 相似新的2.6内核中,进程调度通过重新的编写,删除了以前版本中的效率不高的算法,内核框架页也被重新编写。开始使用NPTL(Native POSIX Thread Library)线程库,这个线程库有以下几个目标: POSIX兼容,都处理结果和应用,底启动开销,低链接开销,与Linux Thread应用的二进制兼容,软硬件的可扩展能力,与C++集成等。 这一切是2.6的内核多线程机制更加完备。
执行tomcat ./shutdown.sh 后,虽然tomcat服务不能正常访问了,但是ps -ef | grep tomcat 后,发现tomcat对应的java进程未随web容器关闭而销毁,进而存在僵尸java进程。网上看了下导致僵尸进程的原因可能是有非守护线程(即User Thread)存在,jvm不会退出(当JVM中所有的线程都是守护线程的时候,JVM就可以退出了;如果还有一个或以上的非守护线程则JVM不会退出)。通过一下命令查看Tomcat进程是否结束:
本文通过阅读Tomcat启动和关闭流程的源码,深入分析不同的Tomcat关闭方式背后的原理,让开发人员能够了解在使用不同的关闭方式时需要注意的点,避免因JVM进程异常退出导致的各种非预见性错误。
和很多程序员打过交道,这些程序员可能熟知for遍历的好几种写法,但是却对写出来的程序部署的环境一无所知。我敢打赌,在spring boot出现之后,已经很少有程序员知道tomcat到底是怎么运行的了。对于他们来说,运行一个jar包就完事了。
java在企业级项目开发中,无论是强制性的功能需要,还是为了简便java的实现,需要调用服务器命令脚本来执行。在java中,RunTime.getRuntime().exec()就实现了这个功能。 用法: public Process exec(String command)-----在单独的进程中执行指定的字符串命令。 public Process exec(String [] cmdArray)---在单独的进程中执行指定命令和变量
多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序。一般情况下,两种类型的多任务处理:基于进程和基于线程。
在Android中,内存泄露的现象十分常见;而内存泄露导致的后果会使得应用Crash 本文 全面介绍了内存泄露的本质、原因 & 解决方案,最终提供一些常见的内存泄露分析工具,希望你们会喜欢。
先了解一下操作系统的一些相关概念,大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(并发简单来说多个任务同时执行)。
前言 在Android中,内存泄露的现象十分常见;而内存泄露导致的后果会使得应用Crash 本文 全面介绍了内存泄露的本质、原因 & 解决方案,最终提供一些常见的内存泄露分析工具,希望你们会喜欢。 目录 1. 简介 即 ML (Memory Leak) 指 程序在申请内存后,当该内存不需再使用 但 却无法被释放 & 归还给 程序的现象 2. 对应用程序的影响 容易使得应用程序发生内存溢出,即 OOM 内存溢出 简介: 3. 发生内存泄露的本质原因 具体描述 特别注意 从机制上的角度来说,
QThread类提供一种独立于平台的线程管理方式。 一个QThread实例管理程序中的一个线程。QThread的执行开始于run()。默认情况下,run()通过调用exec()启动事件循环,并在线程内运行Qt事件循环。
signal包的核心是使用signal.signal()函数来预设(register)信号处理函数,如下所示:
进程中使用malloc/new都是在虚拟内存中开辟的空间,需要通过页表与物理内存建立联系以后才能拥有真正的物理空间,也就是说一个进程能看到多少资源取决于进程地址空间,但这个资源是否有效则取决于页表是否与物理内存之间建立映射关系,也即是进程地址空间是一个进程的资源窗口,页表决定进程到底有多少资源
CPU上下文其实是一些环境正是有这些环境的支撑,任务得以运行,而这些环境的硬件条件便是CPU寄存器和程序计数器。CPU寄存器是CPU内置的容量非常小但是速度极快的存储设备,程序计数器则是CPU在运行任何任务时必要的,里面记录了当前运行任务的行数等信息,这就是CPU上下文。
进程、线程的概念以及多线程编程的基础知识请参考文末给出的方式在公众号历史文章中查找相关文章进行阅读。本文重点介绍线程对象daemon属性在线程退出时产生的作用和影响。
1.线程的概念 在linux操作系统下,线程的本质任然是进程。是轻量级的进程(light weight process)简称LWP,但线程与进程还是有很多的区别。
我们都知道多线程可以提高程序运行的速度,但是至于能够提高多少却一直没有一个直观的印象,下面就用Linux C的多线程编程技术,简要分析下多线程的运行效率。
优先级高的线程并不一定就比优先级低的先获得cpu资源,只是获得cpu资源的概率比较大,具体还要看cpu的调度算法;
对于性能来说,cpu的调度逻辑是影响性能的主要来源,本文主要来介绍下cpu跟性能相关的调度逻辑和排障工具。
共4个文件,服务端一个UpdateServer.conf配置文件和一个UpdateServer脚本,客户端一个UpdateClinet.conf配置文件和一个UpdateClient脚本。 配置文件里主要写一些路径变量,文件名变量,IP地址变量,涉及路径最好用绝对路径。配置文件用来给用户提供修改程序执行环境和相关输入信息。
Qt提供QThread类以进行多任务处理。与多任务处理一样,Qt提供的线程可以做到单个线程做不到的事情。例如,网络应用程序中,可以使用线程处理多种连接器。
这里是对学习的多线程通信做个记录. 之前也对多线程安全 以及 Android 中多线程通信进行了接受,可以前往查看 多线程 以及 线程安全 Handler,Message, MessageQueue 和 Looper
类的初始化函数__init__, 其传递的参数一般采用"具体参数, 可变长元组参数args,可变长字典类型参数 kwargs "相互配合的方式,比如threading.Thread 的初始化函数:
根据任务的不同,CPU 的上下文切换可以分为几个不同的场景,也就是:进程上下文切换、线程上下文切换、中断上下文切换。
Linux系统有着众多的优点,比如开源、非商业版本免费、多任务多用户操作,因此Linux系统在非桌面领域占有压倒性的市场份额。对于互联网技术工作者来说,掌握常用的Linux命令也是一门必修课。下面列举一些笔者在工作中常用的Linux命令。 cd 切换目录 cd .. 返回上一层目录 cd . 进入当前目录 cd - 返回前一次的目录,即上一次的目录不是上一层目录 ls 查看文件与目录 用法: ls [参数][文件] 参数: ls –l 显示文件的权限和属性 ls –a 列出所有的文件,包含隐藏文件(.开
上一篇《不可不知的Linux中三种缓冲模式》中说到了三种缓冲类型,这一篇主要讲与缓冲相关的函数,这些函数可以修改默认的缓冲类型,及在实际中可能遇到的问题。
原文:http://blog.csdn.net/luoweifu/article/details/46595285 作者:luoweifu
什么是线程?线程与进程与有什么关系?这是一个非常抽象的问题,也是一个特别广的话题,涉及到非常多的知识。我不能确保能把它讲的话,也不能确保讲的内容全部都正确。即使这样,我也希望尽可能地把他讲通俗一点,讲的明白一点,因为这是个一直困扰我很久的,扑朔迷离的知识领域,希望通过我的理解揭开它一层一层神秘的面纱。
当程序有循环线程时,窗口关闭时(通过窗口右上角X按钮),重新启动程序失败,提示是否执行上一次结果,每执行上一次结果,就积累一个线程在编译器,因为程序没有完全关闭。
动态性 : 可动态地创建, 结果进程; 并发性 : 进程可以被独立调度并占用处理机运行; (并发:一段, 并行:一时刻) 独立性 : 不同进程的工作不相互影响;(页表是保障措施之一) 制约性 : 因访问共享数据, 资源或进程间同步而产生制约.
本来呢应该先看多进程的,但是由于我的虚拟机之前删除了linux,所以现在没有这个系统,可能无法编译一些多进程的程序,于是我就想着先看多线程了。
线程操作类是Thread类,可以使用这个类进行线程方面的相关操作,例如获得当前线程对象,令当前睡眠,强制激活线程等等,可以直接调用静态的方法。
这里也能解释为什么对于常量字符串类型为什么不能修改了,因为要修改的时候会从虚拟地址转化成物理地址,然后检查权限是否可以修改等等。
进程是一个动态概念,表示程序在一个数据集合上的一次动态执行过程。进程包含正在运行的一个程序的所有状态信息:
大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(别觉得并发有多高深,它的实现很复杂,但它的概念很简单,就是一句话:多个任务同时执行)。多任务运行过程的示意图如下:
在项目中遇到一个问题,我们服务提供给外部的一个接口 queryXXX 一直返回 429 错误(Too Many Requests),接口没有返回值,而且服务越用越卡,要重启一下才能恢复。于是马上就想到是不是因为这个接口产生了死循环,导致接口无法正确返回,同时导致后台 CPU 和内存占用飙升,顺着这个思路定位下去,确实顺利的找到的问题所在。
pidstat:是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。
进程(process)是程序实体运行的过程,是系统进行资源分配和调度的独立单位,或者说是一个程序在处理机上的一次执行活动。 区分一下进程和程序 ---- 1.0 程序是一个静态指令的集合;而进程是一
我们都知道 Linux 是一个多任务操作系统,它支持的任务同时运行的数量远远大于 CPU 的数量。当然,这些任务实际上并不是同时运行的(Single CPU),而是因为系统在短时间内将 CPU 轮流分配给任务,造成了多个任务同时运行的假象。 CPU 上下文(CPU Context) 在每个任务运行之前,CPU 需要知道在哪里加载和启动任务。这意味着系统需要提前帮助设置 CPU 寄存器和程序计数器。 CPU 寄存器是内置于 CPU 中的小型但速度极快的内存。程序计数器用于存储 CPU 正在执行的或下一条要执行
本文首发于我的个人博客:『不羁阁』 文章链接:传送门 本文更新:2018年01月26日13:42:11 本文用来介绍 iOS 多线程中,pthread、NSThread 的使用方法及实现。 第一部分:pthread 的使用、其他相关方法。 第二部分:NSThread 的使用、线程相关用法、线程状态控制方法、线程之间的通信、线程安全和线程同步,以及线程的状态转换相关知识。 文中 Demo 我已放在了 Github 上,Demo 链接:传送门 1. pthread 1.1 pthread 简介
本章将分为两大部分进行讲解,前半部分将引出线程的使用场景及基本概念,通过示例代码来说明一个线程创建到退出到回收的基本流程。后半部分则会通过示例代码来说明如果控制好线程,从临界资源访问与线程的执行顺序控制上引出互斥锁、信号量的概念与使用方法。
在Linux上通过kill -9 pid方式强制终止进程的副作用,这种方式虽然简单高效,但也会带来一些问题,特别是对于应用软件而言。这些问题包括但不限于:
领取专属 10元无门槛券
手把手带您无忧上云