大家好,又见面了,我是你们的朋友全栈君。 href=”file:///C:/DOCUME~1/ZZH331~1/LOCALS~1/Temp/msohtml1/04/clip_filelist.xml” rel=”File-List” />
Windows 配置GPU加速编程环境可能问题比Linux多一些,本文记录配置过程。 环境需求 当前配置 操作系统:Windows 10 显卡型号:Nvidia GeForce GTX 960M 当前驱动:391.25 目标 升级显卡驱动 安装适用的Cuda 安装配套的Cudnn 测试安装结果 升级显卡驱动 查看当前驱动信息 打开Nvidia控制面板 可以看到自己的显卡和驱动 查看并下载自己可用的驱动版本 登录官网:https://www.nvidia.cn/geforce/drivers/
/由于工作需要,必须换操作系统了,一想到笔记本已经冗杂不堪,所以就索性重装成Linux系统,虽然显卡性能不如实验室的机器,但完全可以当做试验机,同时本身机子性能也不差,所以装个乌班图应该体验还不错。以上是我开始时的想法,后来装完了之后呢,体验总体也不错,但总归是有写麻烦,我总结一下放在开头。
当前只装了ubuntu16.04单系统,亲测可用,之前ubuntu16.04+win10双系统下也是这种方法装的,只是需要切换视频线的接口,可参考这篇
前言 之前写过cuda环境的搭建文章, 这次干脆补全整个深度学习环境的搭建. ---- 开发环境一览 CPU: Intel core i7 4700MQ GPU: NVIDIA GT 750M
GTX1080装不上驱动怎么办?要问内部性能最强的电脑是什么?当然不是编辑们手上用的这些普通电脑啦,最强的性能当属我们的测试平台,i7 5960X加512G固态硬盘以及各式各样的顶级显卡,想想就让人流口水。但是最近这台超强的测试平台在重装系统后,遇到了一些小问题。下面脚本之家小编就给大家带来GTX1080装不上驱动解决办法。
我们在linux中安装驱动,有时会遇到受限或冲突,通常解决方式都是要修改blacklist.conf, 那么如何认识和深入了解它呢?下面就解读下 一、blacklist黑名单 对内核模块来说,黑名单是指禁止某个模块装入的机制
目前常见的深度学习框架有很多,最出名的是:PyTorch(facebook出版), Tensorflow(谷歌出版),PaddlePaddle(百度出版)。PyTorch是目前最主流的深度学习框架,我们就选择PyTorch肯定没错。
分享在Ubuntu 14.04下CUDA8.0 + cuDNN v5 + Caffe 安装配置过程。
Ubuntu22.04 默认显卡驱动,如果安装cuda,需要单独安装显卡驱动,并禁止默认显卡驱动。
上个月在新入手的笔记本上安装了一个CUDA的开发环境,并选择安装了GeForce Experience工具,前两天打开GeForce Experience工具浏览时,工具提醒可以更新NVIDIA显卡驱动,于是便勾选并更新了NVIDIA显卡驱动,更新完成之后就没管它,也没有再使用过CUDA开发环境,直到昨天打开CUDA开发环境准备调试一个应用程序时,突然弹出错误提示框:
由于实验需要,在实验室电脑上搭建深度学习Caffee框架。一共花了两天的时间,其中遇到了不少的问题,记录一下。 Caffee在配置上相对来说比较麻烦,需要前期安装的东西比较多,逐一介绍。
1.cat /usr/local/cuda/version.json 2.或者 nvcc -V(注意是大写 ) 3 nvidia-smi
目录 前言 老黄和他的核弹们 开发环境一览 显卡驱动安装 下载驱动 禁用nouveau 安装驱动 安装CUDA8.0 参考 最后 ---- 前言 在Linux下安装驱动真的不是一件简单的事情,
FreeBSD是一个完全开放的、安全的系统,可以Do it yourself的系统。但是个人还是不喜欢呆板的命令行界面,所有就给 FreeBSD 12.1 安装 GNOME3 图形界面。
今年6月份清华大学发布了ChatGLM2,相比前一版本推理速度提升42%。最近,终于有时间部署测试看看了,部署过程中遇到了一些坑,也查了很多博文终于完成了。本文详细整理了ChatGLM2-6B的部署过程,同时也记录了该过程中遇到的一些坑和心得,希望能帮助大家快速部署测试。另外:作者已经把模型以及安装依赖全部整理好了,获取方式直接回复:「chatglm2-6b」
最近,有一些用户在使用Kali Linux操作系统时遇到了一个很常见的问题:开机后无法进入图形化界面,只能看到命令行界面。本文将介绍可能导致此问题出现的原因,并提供解决方案。
可能有些朋友已经装了对应的Python版本和Conda了,我们先查看一下对应的版本。
搭建深度学习环境所需资料 (md 我就安个神经网络的环境简直要了我的狗命) 不过还是认识到很重要的一点,在书上找再多的资料 都不如自己亲身实践一下 还是要总结一下学了what 不然白捯饬了
1).run形式安装cuda。清理原有显卡驱动后,先安装自己显卡对应的驱动,在步骤中出现”Would you like to run the nvidia-xconfig utility to automatically update your X configuration file…”时,选择 No。(这里是cuda自带的旧版本的驱动)。
解决方法:等待出现出现故障的DNS服务器工作正常,或者进入网络连接手动给系统设置正确的DNS地址。
https://tensorflow.google.cn/install/source
最近使用Steam下载了一款3D游戏,好大G啊,花了我老长时间了,安装完成之后启动居然提示显卡驱动不对,无法启动游戏,郁闷了。
我用过多款linux系统,电脑上装的是Ubuntu和deepin,服务器端用的是centos,还用过优麒麟等。黑苹果也用了一段时间。现在linux系统已经发展的比较完善,内核及其图形界面也很稳定,当要说真的可以当做个人操作系统来使用的,我认为是deepin系统。deepin是一款国产系统,基于debian开发的linux操作系统,它拥有linux系统的所有优势,而且完美结合deepin-wine可以使用windows相关应用,个人上个网聊个微信,编辑个文件绝对不在话下,而且其软件运行速度要比windows系统快。随着系统的不断完善和发展,我相信deepin以后肯定可以支持更多的应用。
前几天买了一张RTX2060显卡,想自学一下人工智能,跑一些图形计算,安装Ubuntu1 8.04后发现英伟达显卡驱动安装还是有点小麻烦,所以这里记录一下安装过程,以供参考:
该文介绍了在Ubuntu 16.04环境下安装NVIDIA GPU显卡驱动、CUDA 8.0以及PyTorch的方法。首先,需要更新系统并安装NVIDIA驱动,然后下载CUDA 8.0,接着安装PyTorch。安装完成后,可以通过在终端中输入 'import torch' 来验证安装是否成功。最后,更新numpy并验证GPU是否可用。
由于实验室需要,准备配置新的服务器,之前一直使用windows比较多,linux比较少,于是开始重新学习linux各种环境的搭建.
这里选择continue继续就好(这里我想的是要是之前没有安装显卡驱动的话,在这里安装的显卡驱动重启后会不会黑屏)
如果你的电脑安装了 Ubuntu16.04,而且电脑自带一块 NVIDIA GeForce 的 GPU 显卡,那么不用来跑深度学习模型就太可惜了!关于这方面的网上教程很多,但大都良莠不齐。这篇文章将手把手教你如何安装 GPU 显卡驱动、CUDA9.0 和 cuDNN7。值得一试!
🎬 鸽芷咕:个人主页 🔥 个人专栏:《linux深造日志》《粉丝福利》
近来入坑了TITAN 1080显卡,在Ubuntu 16.04下为装好驱动以使用Gpu版TensorFlow可不简单,踩了许多坑之后写下此篇为记录。 下载Cuda 按装官方教程,我们可以应该安装Cu
遇到的问题:在这个步骤的时候,由于我们是多账号的服务器,在登录管理员账号的时候,老是出现login incorrect,但是通过普通用户是可以登录的,因此通过普通用户登录,然后su 然后输入密码
我已经无语了,这次能险中求胜感觉都是靠运气,最近玩这个游戏反复去重装显卡驱动,我只记得有一次装完驱动系统特别卡顿然后直接被我强制关机了,就这么个操作我认为就是这次事件的原因,至于到底为什么我都没搞清楚。
此篇博客记录一下TLinux系统安装显卡NVIDIA驱动与CUDA10/11的艰难过程。
Ubuntu安装Caffe出现无法登陆图形界面或者循环登陆(Loop Login)问题,一般都是由于显卡驱动或者Cuda低版本的一些不兼容问题。
如果返回结果是 True,则说明环境已经搭建好;如果返回是 False,则说明环境还有问题。如果上述安装都没有问题,那么可能和笔者一样,是 Manjaro 当前启用了开源的 Nouveau 显卡驱动,需要将其禁用,然后再安装最新的 Nvidia 闭源驱动(详见下文)。
Canonical在4月底正式发布了Ubuntu 16.04 LTS,这是一个长期支持版本,官方表示会提供长达5年的技术支持(包括常规更新/Bug修复/安全升级),一直到2021年4月份。 之前由于某些原因,对Linux的桌面版一直持排斥的态度,一直使用的是Centos 6.5。用过Ubuntu 14.04后感觉以桌面环境著称的Ubuntu不过如此,然而上手16.04后,瞬间有种惊艳之感,第一眼看到的是launcher放到了下面。说实在的,本人并不觉得Ubuntu的UI设计有多美,我更加倾向于Windows 10的Metro风,扁平化的设计才是主流,真正吸引我的是Ubuntu的质的提高的人性化的用户体验,无论是从整体流畅性还是细节的改进。
近来因为需要做 iOS 的项目,所以需要多花一些时间看看敲敲代码。因为自己手头上并没有 Mac(过年为了闲的时候能玩玩游戏买了联想,唉),想想不能只靠每天在公司的时间练 demo 吧,那样学的太慢了,所以就想着在 Win8 下装个 Mac 试试。装 Mac 有两个选择,一个是双系统,这个我查了查,发现我的型号的笔记本驱动问题太多,再加上我已经装了 Ubuntu 双系统,怕自己搞出大问题来,所以放弃。如果你想装双系统的话,就别看下去了,赶快去找双系统的攻略吧。另一个选择就是装虚拟机里,我在网上找了找方法, 发现的确可以用,装完 Xcode 在模拟器里跑程序一点不卡,就是虚拟机的 Mac 显卡驱动有点老了,界面上稍微有一点的不流畅,当然完全不影响操作的!下面我就把安装配置过程记录下来。虽然网上这类文章虽然很多,但比较乱,有些还是旧版本的,我记录的是从安装到结束的整个过程以及遇到的一些问题和解决方法,如果按照这个步骤来肯定没问题的,下面进入正题。
该文介绍了在Ubuntu 16.04系统中,安装NVIDIA GTX965M显卡驱动的方法,通过PPA源安装,禁用nouveau驱动,并更新内核,即可成功安装。安装完成后,重启系统,登录死机现象消失,系统运行正常。
但是最近准备用 GPU 跑模型时,提示 cuda 不存在。前段时间刚装的驱动,怎么会不存在呢?
今天分享的内容是 KubeSphere 最佳实战「2024」 系列文档中的 openEuler 22.03 LTS SP3 安装 NVIDIA 显卡驱动。
禁用BIOS的secure boot,即disable它,如果不关闭,使用第三方源安装显卡驱动会安装后不能使用。
这次我们聊下 MacOS,因为最近给笔记本(intel/nvidia)和台式机(amd/ati)吃上了黑苹果,也就是用上了 Mac OS 苹果电脑系统。很久以前就想过搞个 mac 玩一下,那时候没那个精力去搞事(其实还是懒)简单弄了个虚拟机苹果玩了下,体验极差!后来一想干脆算了,可能最后苹果吃不成还把现有系统搭进去都有可能hhh?.. 所以后面一直没搞过,win10随着时间的迭代也逐渐完善起来之后就更没有上苹果的想法了嗯。
上周末,智谱AI在2023中国计算机大会(CNCC)上推出了全自研的第三代基座大模型ChatGLM3,在各个任务上相比ChatGLM2都有了很大的提升。今天终于下载了模型部署测试,实际效果确实要比ChatGLM2要好。
(1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。
1. 下载cuda10.1: 英伟达官网链接:https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_6
Ubuntu 下安装CUDA需要装NVIDIA驱动,首先进入NVIDIA官网,然后查询对应NVIDIA驱动是否支持你电脑的型号。
注释:升级高版本的nvidia驱动和cuda是不影响现有的docker镜像和容器的。因为是向下兼容的。仅仅升级后重启服务器即可。
领取专属 10元无门槛券
手把手带您无忧上云