在内核里,使用gic_chip_data结构体表示GIC,gic_chip_data里有什么?
在用户态空间,调用发送数据接口 send/sento/wirte 等写数据包,在内核空间会根据不同的协议走不同的流程。以TCP为例,TCP是一种流协议,内核只是将数据包追加到套接字的发送队列中,真正发送数据的时刻,则是由TCP协议来控制的。TCP协议处理完成之后会交给IP协议继续处理,最后会调用网卡的发送函数,将数据包发送到网卡。
中断是计算机体系结构中的一个重要概念,用于处理器响应异步事件。中断设计对于提高计算机系统的性能和响应能力至关重要。下面详细讲解中断的工作原理、类型、中断处理流程以及中断设计的关键组件,并附上逻辑示意图。
不同处理器上的中断处理流程大致是相同的,但也有些细微差别,所以这里只介绍中断大概的几个阶段,如下图所示:
Workqueue 工作队列是利用内核线程来异步执行工作任务的通用机制,利用进程上下文来执行中断处理中耗时的任务,因此它允许睡眠。而 Softirq 和 Tasklet 在处理任务时不能睡眠。Softirq 是内核中常见的一种下半部机制,适合系统对性能和实时响应要求很高的场合,比如网络子系统,块设备,高精度定时器,RCU 等。
arm64的异常向量表vectors中设置了各种异常的入口,目前有效的异常入口有两个同步异常el0_sync,el1_sync和两个异步异常el0_irq,el1_irq,其他异常入口暂时都invalid。中断属于异步异常,所以本文重点关注el0_irq和el1_irq。
硬件平台环境如下图所示,采用两台带有以太网口的设备相连,一端是PC机插有PCIe的FPGA开发板,运行Windows操作系统;另一端是嵌入式设备,运行VxWorks操作系统。
企业级SSD需要在大量企业数据读写下保持超高稳定性,以及24 小时全天候运行,SSD的读写速度、使用寿命、稳定性及可靠性是企业级用户关注的重点。为满足用户对企业级SSD高性能、低延时、轻量级、高可靠等需求,忆联设计并开发了适合SSD的嵌入式操作系统(Operating System,缩写:OS),并在其上构建了可复制性强的SSD 控制器软件系统。
CPU执行程序时,由于发生了某种随机的事件(外部或内部),引起CPU暂时中断正在运行的程序,转去执行一段特殊的服务程序(中断服务子程序或中断处理程序),以处理该事件,该事件处理完后又返回被中断的程序继续执行,这一过程称为中断。
上面代码中可以看到代码中向量表位于__vectors_start,它在arch/arm/kernel/vmlinux.lds中定义:
a -- 具体CPU architecture相关的模块会进行现场保护,然后调用machine driver对应的中断处理handler;
信号处理是写任何服务程序都逃避不了的问题。比如写TCP服务程序,一般都要将SIGPIPE设置为SIG_IGN。—— 当TCP连接由内核判定为已“中断”或者说“断连”,而应用层还在尝试往这个连接对应的套接字写入数据时,就会产生SIGPIPE信号。如果应用程序没有注册过SIGPIPE信号处理函数,内核则会执行SIGPIPE的默认处理即终止当前进程。但是对于TCP服务来说,出现这种情况是属于正常范围内(譬如对端直接RST了连接),所以服务程序应该直接设置忽略SIGPIPE。
statement_timeout是Postgres种的一个配置参数,用于指定SQL语句执行的超时时间,当超时时就取消该SQL的执行,并返回错误信息。这个参数通常用于控制运行时间较长的查询,避免影响数据库性能和响应时间。一旦一条SQL查询花费几分钟甚至更长时间才能执行完时,若没有限制,这种查询可能占用数据库资源,导致其他请求阻塞。
对于嵌入式系统来说,中断的响应时间在时序要求非常严格的情况下十分的重要,所以必须要能够找到中断测试的方法。本文主要介绍两种常用中断测试方法的理论。
这是 os summer of code 2020 项目每日记录的一部分: 每日记录github地址(包含根据实验指导实现的每个阶段的代码):https://github.com/yunwei37/os-summer-of-code-daily
程序查询方式是一种基本的I/O操作方式,它依赖于CPU不断检查(查询)I/O设备的状态,以确定设备是否准备好进行数据传输。以下是对程序查询方式的详细讲解:
中断与异常在任何体系架构的芯片上都不会完全一样。在arm的m系列芯片上需要理解NVIC,这个相对较为容易,而对于高端一些的芯片,中断的处理就会复杂许多。比如arm上的gic(Generic Interrupt Controller)。要使用好GIC则需要专门去读这个外设的手册,然后写中断控制。对于MIPS中断控制的处理流程,就是本文描述的重点。
今天分享一篇经典Linux协议栈文章,主要讲解Linux网络子系统,看完相信大家对协议栈又会加深不少,不光可以了解协议栈处理流程,方便定位问题,还可以学习一下怎么去设计一个可扩展的子系统,屏蔽不同层次的差异。
中断响应模块目前使用了8259A PIC芯片进行中断处理。使用两块8259A芯片级联,并采用AEOI、FNM全嵌套、无缓冲模式进行处理。
在riscv中一共定义了三种状态中断,对于hart层面,hart包含local中断源和global中断源。而local中断只有Timer和Software中断两种,而global中断则称为external interrupts。只有global中断源可以被PLIC core响应,通常为I/O device。
| 导语 本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
最近使用tcpdump的时候突然想到这个问题。因为我之前只存在一些一知半解的认识:比如直接镜像了网卡的包、在数据包进入内核前就获取了。但这些认识真的正确么?针对这个问题,我进行了一番学习探究。
今天给大侠带来《基于FPGA的DDR3多端口读写存储管理设计》,作者:吴连慧,周建江,夏伟杰 南京航空航天大学 电子信息工程学院,南京 210016,话不多说,上货。
任何时候,中断和异常的产生都是十分值得关注的,这些将破坏程序原有的执行逻辑。按照芯片的设计来说,中断和异常大致上可以分为三类异常(Exception)、陷入(Trap)、外部中断(Interrupt)。
准备工作以及中断原理与流程与上一篇VxWorks版本一致,不同的是这次的Windows版本下中断的中断流程添加了开关保护。
先说明两个概念:中断和系统调用 一 系统调用: 是应用程序(运行库也是应用程序的一部分)与操作系统内核之间的接口,它决定了应用程序是如何和内核打交道的。 1, Linux系统调用:2.6.19版内核提供了319个系统调用。比如 exit fork read open close …… 2, 对Windows来说,操作系统提供给应用程序的接口不是系统调用,而是API。比如:ReadFile。我们暂时把API和系统调用等同起来 3, Linux中,每个系统调用对应一个系统调用号,内核维护了一个系统调
最近在研究异步消息处理, 突然想起linux内核的中断处理, 里面由始至终都贯穿着”重要的事马上做, 不重要的事推后做”的异步处理思想. 于是整理一下~ 第一阶段 获取中断号 每个CPU都有响应中断的
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
转载请标明原址:linux驱动最新面试题(面试题整理,含答案)_不忘初心-CSDN博客_linux驱动面试题
电脑可以外接很多设备,如键盘、鼠标、硬盘、显示器、网卡等,每个设备的用法和功能不同,操作系统为了对这些输入输出设备进行统一管理,必须要屏蔽设备之间的差异,因此需要设备控制器。
local_irq_disable的功能是屏蔽当前CPU上的所有中断,通过操作arm核心中的寄存器来屏蔽到达CPU上的中断,此时中断控制器中所有送往该CPU上的中断信号都将被忽略。
首先肯定的一点是:不要一上来就看内核代码,基本上你会很快被挫败感打败。内核正在变得越来越庞大,学习曲线越来越陡峭,当你一无所知的时候冒然进入linux kernel,你会发现处处都是障碍,处处都是大坑,你根本走不下去。最好的方法是把对内核源代码的热情先放在心里,从基本功开始。
中断是硬件和软件交互的一种机制,可以说整个操作系统,整个架构都是由中断来驱动的。中断的机制分为两种,中断和异常,中断通常为 $IO$ 设备触发的异步事件,而异常是 $CPU$ 执行指令时发生的同步事件。本文主要来说明 $IO$ 外设触发的中断,总的来说一个中断的起末会经历设备,中断控制器,$CPU$&$OS$ 三个阶段:设备产生中断,中断控制器接收和发送中断,$CPU$&$OS$ 来实际处理中断。
软中断、tasklet和工作队列并非Linux内核中一直存在的机制,而是由更早版本号的内核中的“下半部”(bottom half)演变而来。
键盘可以说是我们最常使用的输入硬件设备了,但身为程序员的你,你知道「键盘敲入 A 字母时,操作系统期间发生了什么吗」?
本系列参考: 学习开发一个RISC-V上的操作系统 - 汪辰 - 2021春 整理而来,主要作为xv6操作系统学习的一个前置基础。
既然叫中断, 那我们首先就会想到这个中断是中断谁?想一想计算机最核心的部分是什么?没错, CPU, 计算机上绝大部分的计算都在CPU中完成,因此这个中断也就是中断CPU当前的运行,让CPU转而先处理这个引起中断的事件,通常来说这个中断的事件比较紧急,处理完毕后再继续执行之前被中断的task。比如,我们敲击键盘,CPU就必须立即响应这个操作,不然我们打字就全变成了慢动作~。说白了中断其实就是一种主动通知机制,如果中断源不主动通知,那想知道其发生了什么事情,只能一次次地轮询了,白白耗费CPU。
Linux内核对网络驱动程序使用统一的接口,并且对于网络设备采用面向对象的思想设计。
从2005年我接触Linux到现在15年了,Linux中断系统的变化并不大。比较重要的就是引入了threaded irq:使用内核线程来处理中断。
软中断分析最近工作繁忙,没有时间总结内核相关的一些东西。上次更新博客到了linux内核中断子系统。这次总结一下软中断,也就是softirq。之后还会总结一些tasklet、工作队列机制。 1.为什么要软中断 编写驱动的时候,一个中断产生之后,内核在中断处理函数中可能需要完成很多工作。但是中断处理函数的处理是关闭了中断的。也就是说在响应中断时,系统不能再次响应外部的其它中断。这样的后果会造成有可能丢失外部中断。于是,linux内核设计出了一种架构,中断函数需要处理的任务分为两部分,一部分在中断处理函数中执
在上期《云计算与虚拟化硬核技术内幕 (14) —— 不忘初心,删繁就简》中,我们介绍了Linux网桥,也遗留了一些问题:
GIC,Generic Interrupt Controller。是ARM公司提供的一个通用的中断控制器。主要作用为:接受硬件中断信号,并经过一定处理后,分发给对应的CPU进行处理。
在嵌入式开发过程中,中断处理是一个不可或缺的环节。本篇博文将以STM32微控制器为核心案例,深入解析中断处理在MCU开发中的关键步骤和策略。主要有以下几个关键点:
F-Stack是一个全用户态(kernel bypass)的高性能的网络接入开发包,基于DPDK、FreeBSD协议栈、微线程接口等,适用于各种需要网络接入的业务,用户只需要关注业务逻辑,简单的接入F-Stack即可实现高性能的网络服务器。 本文介绍F-Stack的详细架构及如何解决内核协议栈面临的问题。 传统内核协议栈的性能瓶颈 在传统的内核协议栈中,网络包处理存在诸多瓶颈,严重影响网络包的收发性能。性能瓶颈主要包括以下几个方面 局部性失效 - 一个数据包的处理可能跨多个CPU核心、缓存失效、NUM
领取专属 10元无门槛券
手把手带您无忧上云