作者简介: 伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享。 原理概述 为什么要研究链接和加载?写一个小的main函数用户态程序,或者是一个小的内核态驱动ko,都非常简单。但是这一切都是在gcc和linux内核的封装之上,你只是实现了别人提供的一个接口,至于程序怎样启动、怎样运行、怎样实现这些机制你都一无所知。接着你会对程序出现的一些异常情况束手无策,对内核代码中的一些用法不能理解,对makefile中的一些实现不知所云。所以这就是我们
最近一段时间,在跟开发者沟通过程中,萝莉发觉有些开发者对iOS的应用符号表还不是很清楚,除了咨询关于符号表生成、配置的问题以外,对Bugly崩溃分析需要配置符号表也存在疑问。 在这里,萝莉就给大家分享下关于iOS符号表的一些内容。 首先,进行常识“脑补”。 1. 符号表是什么? 符号表就是指在Xcode项目编译后,在编译生成的二进制文件.app的同级目录下生成的同名的.dSYM文件。 .dSYM文件其实是一个目录,在子目录中包含了一个16进制的保存函数地址映射信息的中转文件,所有Debug的symbols都
欲成其事先利其器。要想完成一项复杂的任务,工具的作用至关重要。要想在Linux系统上开发或研究木马病毒等特殊程序,我们需要使用一系列强大的开发和调试攻击。本节先介绍几种在Linux系统上极为强大的工具。
我首次起草这篇文章是在备战我的PHP认证时,以便更好地了解PHP如何管理内存中的变量和对象。经过大量研究,我意识到找到我的问题的答案并不容易,所以一旦我完成了,我决定记录信息,以便人们可以在一个地方找到它。
现在我们知道了程序的编译链接是在翻译环境中进行的,接下来我们来探讨程序编译链接的具体过程。首先,我们来探讨编译,编译其实分为三个阶段,分别是:预处理(预编译)、编译、汇编。这三个阶段所执行的具体操作如下。
大家会不会跟我最开始一样,觉得在IDE里点一下RUN按钮,我们写的代码就直接直接跑起来了吧?
extern "C"的主要作用就是为了能够正确实现C++代码调用其他C语言代码。加上extern "C"后,会指示编译器这部分代码按C语言(而不是C++)的方式进行编译。由于C++支持函数重载,因此编译器编译函数的过程中会将函数的参数类型也加到编译后的代码中,而不仅仅是函数名;而C语言并不支持函数重载,因此编译C语言代码的函数时不会带上函数的参数类型,一般只包括函数名。
今天讲的是纯干货,目的就是为了指导Android开发者如何根据JNI Crash日志顺藤摸瓜,最后直捣黄龙定位磨人的JNI Crash。所以废话不多,直接开干吧。
之前的文章中,我们已经学习过引用和引用传值相关的知识。我们知道,PHP 中没有纯引用(指针),不管是对象,还是用引用符号 & 赋值的变量,都是对一个符号表的引用。而今天,我们要学习的是另一种引用形式:弱引用。
HOOK中文译为“挂钩”或“钩子”。在iOS逆向中是指改变程序运行流程的一种技术。通过HOOK技术可以让别人的程序执行自己所写的代码。在逆向中经常使用这种技术。所以在学习过程中,我们重点要了解其原理,这样能够对恶意代码进行有效的防护。
这里,你现在可以知道System.map文件是干什么用的了。 每当你编译一个新内核时,各种符号名的地址定会变化。 /proc/ksyms 是一个 "proc文件" 并且是在内核启动时创建的。实际上 它不是一个真实的文件;它只是内核数据的简单表示形式,呈现出象一个磁盘文件似 的。如果你不相信我,那么就试试找出/proc/ksyms的文件大小来。因此, 对于当前运行的内核来说,它总是正确的.. 然而,System.map却是文件系统上的一个真实文件。当你编译一个新内核时,你原 来的System.map中的符号信息就不正确了。随着每次内核的编译,就会产生一个新的 System.map文件,并且需要用该文件取代原来的文件。
有赞在基础保障平台的实践中完成了 Crash平台 的建设,但是iOS的崩溃日志未经符号化,排查问题比较困难。为了降低iOS App的crash率,快速排查线上crash,疑难crash的跟踪处理,符号化崩溃日志显得尤为重要!
程序员编写的是源代码,而计算机运行的则是CPU能识别的机器指令,因此必须要有一系列工具或程序来将源代码转化为机器指令,这个转化的过程需要经历编译和链接两个主要阶段。所谓编译就是将源代码文件转化为中间的目标文件(Object file)。目标文件的后缀一般为.o。iOS系统的目标文件也是一种mach-o格式的文件,mach-o文件的头部结构体:struct mach_header中的filetype成员字段用来描述当前文件的类型,目标文件所对应的类型是MH_OBJECT。目标文件中的布局结构和内容和可执行文件中的布局结构和内容非常相似,编译后形成的目标文件中的代码段(__TEXT Segment)中的节(__text Section) 中的内容存放的是已经被编译为机器指令的二进制代码了。下面就是一个目标文件的布局结构:
二、指针的好基友的& 1.&的意义。说&是指针的好基友其实不恰当,因为&这个符号在C/C++不止有一种含义,但是因为其经常会和指针一起出现在被问的问题列表上,所以,在大部分情况下,它们是好基友,那么&符号一共有哪些涵义呢?这一般都是初级筛选的题目,这种题目的意义在于快速的筛选掉那些根本什么也不会的人。答案很简单,主要有三个地方会用到这个符号,第一个取变量的地址,比如在int *pointer=&i;时,这是这个符号是出现在等号的右边(也就是右值),第二个表示引用,这个概念会是本节的重点,出现在int &re
理解链接器将帮助你构造大型程序。构造大型程序的程序员经常会遇到由于缺少模块、缺少库或者不兼容的库版本引起的链接器错误。除非你理解链接器是如何解析引用、什么是库以及链接器是如何使用库来解析引用的,否则这类错误将令你感到迷惑和挫败。
原文:http://xcd.blog.techweb.com.cn/archives/222.html
1, 编译器编译源代码生成的文件叫做目标文件。 从结构上说,是编译后的可执行文件,只不过还没有经过链接 3.1 目标文件的格式 1,可执行文件的格式: Windows下的PE 和 Linux下的ELF 2,从广义上说,目标文件与可执行文件的格式几乎是一样的,所以广义上可以将目标文件与可执行文件看成是一种类型的文件。 3,可执行文件,动态链接库,静态链接库都按照可执行文件格式存储(Windows下是 PE-COFF格式,Linux下是ELF格式)。 4,Linux下命令: $: file ***
在Linux操作系统中,一段C程序从被写下到最终被CPU执行,要经过一段漫长而又复杂的过程。下图展示了这个过程
今天我们正式开始C++语言的学习,和C语言一样,我们与C++的第一缕羁绊从打印 “hello world” 开始:
在完成空间与地址的分配步骤之后,链接器就进入了符号解析与重定位的步骤,这也就是静态链接的核心作用; 在分析符号解析和重定位之前,首先让我们来看看“a.o”里面是怎么使用这两个外部符号,也就是说我们在“a.c”源程序里面使用了“shared”变量和“swap”函数,那么编译器在将“a.c”编译成指令时,它如何访问“shared”变量?如何调用“swap”函数? 使用objdump的-d参数可以看到“a.o”的代码反汇编结果: objdump -d a.o
在了解了共享对象的绝对地址的引用问题后,我们基本上对动态链接的原理有了初步的了解,接下来的问题是整个动态链接具体的实现过程了。动态链接在不同的系统上有不同的实现方式。ELF的动态链接的实现方式会比PE的简单一点,在这里我们先介绍ELF的动态链接过程在LINUX下的实现,最后我们会专门的章节中介绍PE在Windows下的动态链接过程和它们的区别
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说readelf命令使用说明[通俗易懂],希望能够帮助大家进步!!!
最近使用 WebRTC 开发一个实时直播项目,在调试的时候发现一个特别奇怪的现象,将编译好的 WebRTC 静态库文件加入到我们自己的工程里之后无法进行单步调试。每次调到 WebRtc 里都会变成汇编语言,如果如下:
其实就是翻译,比如从字符串编译到机器码,就是把人能理解的代码语言翻译成机器能“理解”(识别执行)的机器语言,然后用户借助目标程序就可以与机器交互了:
内核模块是Linux操作系统中一个比较独特的机制。通过这一章学习,希望能够理解Linux提出内核模块这个机制的意义;理解并掌握Linux实现内核模块机制的基本技术路线;运用Linux提供的工具和命令,掌握操作内核模块的方法。
Javac编译器是Java的标准编译器,用于将Java源代码(.java文件)编译成Java字节码(.class文件),供Java虚拟机(JVM)执行。
学习任何一门编程语言,都会从Hello World 开始。对于一门从未接触过的语言,在短时间内我们都能用这种语言写出它的Hello World。然而,对于Hello World 这个简单程序的内部运行机制,我相信还有很多人都不是很清楚。 Hello World 这些信息是如何通过显示器显示的? cpu执行的代码和程序中我们写的的代码肯定不一样,她是什么样子的? 又是如何从我们写的代码变成cpu能执行的代码的? 程序运行时代码是在什么地方? 她们是如何组织的? 程序中的变量存储在什么地方? 函数调用是怎样实现
/proc/kallsyms会显示内核中所有的符号,但是这些符号不是都能被其他模块引用的(绝大多数都不能),能被导出的是符号的类型是大写的那些(例如T,U)。
在学习预编译之前我们有必要先大致了解一下一个程序从开始到结束的过程,这样有利于我们加深对程序运行的理解。
这本书很有意思,它的书名是 《Compilers: Principles, Techniques, and Tools》,也就是编译器的原则、技术和工具。但它却画出了一个恐龙和骑士,恐龙身上写的是 Complexity of Compiler Design,也就是复杂的编译器设计,骑士的盾上写的是 Syntax Directed Granslation,也就是语法翻译。骑士的剑上看的不是很清楚,我猜测应该是优秀的编译器的意思。这是征服复杂性的隐喻。优秀的编译器会直接征服复杂的编译,复杂的编译设计永远无法攻破语法翻译。
在ANSI C(美国国家标准协会(ANSI)及国际标准化组织(ISO)推出的关于C语言的标准)的任何一种实现中,程序都存在两个不同的环境。
开篇 学习任何一门编程语言,都会从hello world 开始。对于一门从未接触过的语言,在短时间内我们都能用这种语言写出它的hello world。 然而,对于hello world 这个简单程序的内部运行机制,我相信还有很多人都不是很清楚。 hello world 这些信息是如何通显示器过显示的? cpu执行的代码和程序中我们写的的代码肯定不一样,她是什么样子的?又是如何从我们写的代码变成cpu能执行的代码的? 程序运行时代码是在什么地方?她们是如何组织的? 程序中的变量存储在什么地方? 函数调用是怎样
今天我们要来探究的内容是一个或者多个源文件(.c)是如何变成一个可执行程序(.exe)的,博主将在Linux环境gcc编译器中进行分步演示,让你深入理解程序环境。
当我们协同完成一个项目时,你定义的变量会不会与其他人定义的变量名冲突???
vma是指的不同段的地址入口,可以看到虽然段有很多,但是type类型大部分都一样,比如代码段类型分为了两个段描述更加细致;数据段更夸张用了五个段存储初始化了的变量
ELF文件装载链接过程及hook原理 ELF文件格式解析 可执行和可链接格式(Executable and Linkable Format,缩写为ELF),常被称为ELF格式,在计算机科学中,是一种用于执行档、目的档、共享库和核心转储的标准文件格式。 ELF文件主要有四种类型: 可重定位文件(Relocatable File) 包含适合于与其他目标文件链接来创建可执行文件或者共享目标文件的代码和数据。 可执行文件(Executable File) 包含适合于执行的一个程序,此文件规定了 exec() 如何创
我们发现出现了链接问题,说const_int没有定义的引用,但我们确实在const.cc文件中定义了。
任何一个C语言程序在执行时,都会存在两个不同的环境。 第一个是翻译环境:在这个环境中C程序的源代码会被转换为可执行的机器指令(二进制指令) 第二个是执行环境:它用于实际执行代码
C++相比C语言(32个)引入了更多的(63个)关键字,这一点也可以管中窥豹看出一点C++的复杂。
该方法的主要原理是利用dl_runtime_resolve函数来对动态链接的函数进行重定位。
就是随机产生偏移量然后写入,区别于顺序读写需要考虑当前写到哪儿了然后再末尾进行写入。一句话就是随机产生偏移量进行写入
这一部分,我们再回过头来看看变量、函数是怎样存储和处理的、以及符号表是怎样构建的。
在php中,符号"&"表示引用。 1、看看不引用的情况是这样子: $a = "hello world";//定义一个变量,下面赋值给$b $b = $a;//这一步没有在$a之前加符号&,像这样子"$b= & $a"。没有加&,实际上原理是会将变量$a复制拷贝一份,也就是内存中重新申请一个地址存储变量$b了 ps:在php中,使用"="直接赋值,其实就是拷贝一份右边的变量给b,会生成一份内存空间,结果可能是同样的内容在内存中两份。在有些关于php性能方面提到,这样子会多占有内存空间。不过我接触中,大部分人
通过词法分析和语法分析,我们可以将程序转换为一棵抽象语法树,根节点为statement,并递归子节点为statement或者expression,叶节点为terminal(如'A')。然而,我们并不仅仅需要语法本身,同时要考虑语法的实际含义。编译器进入语义分析阶段。
目标文件是源代码编译但未链接的中间文件(Windows的.obj和Linux的.o),Windows的.obj采用 PE 格式,Linux 采用 ELF 格式,两种格式均是基于通用目标文件格式(COFF,Common Object File Format)变化而来,所以二者大致相同。本文以 Linux 的 ELF 格式的目标文件为例,进行介绍。
源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 汇编程序 (assembler) → 目标代码 (object code) → 连接器 (Linker) → 可执行程序 (executables)
在Linux中,可执行文件的格式是ELF格式,而有一些命令可以帮助我们了解它们更多的“秘密”,以此来帮助我们解决问题。
目录 前言 程序的翻译环境和执行环境 翻译环境 编译+链接 翻译阶段详解 预编译 编译 汇编 链接 运行环境 预处理详解 预定义符号 #define #define 定义标识符 #define 定义宏 宏定义计算弊端 #define 替换规则 #和## #的作用 ## 的作用 带副作用的宏参数 宏和函数对比 宏和函数优劣表 宏和函数命名约定 #undef 命令行定义 条件编译 条件编译类型 文件包含 头文件包含方式 嵌套文件包含 ---- 前言 ---- 本章主要讲解点: 代码编译链接变成可执行程序程序的
用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(1)- 目标和前言 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(2)- 简介和设计 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(3)- 词法分析 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(4)- 语法分析1:EBNF和递归下降文法 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(5)- 语法分析2: tryC的语法分析实现 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(6)- 语义分析:符号表和变量、函数
领取专属 10元无门槛券
手把手带您无忧上云