多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
楼主本来是要继续写服务器并发的,但是后续的服务器相关点都和进程线程联系在一起,所以先把进程线程相关内容写完吧! 这次只写进程线程的概述,实际操作后续博文逐一代码实现。 进程同步or进程通信/线程同步or线程通信? 这两组概念迷惑我至今,网上和书籍对这个的描述也是爱用啥用啥的感觉,今天又重新理了一遍。 什么是同步:同步就是数据保持一致,无论是进程还是线程,都是实现了代码执行流程的分支,多个分支同时进行。多个分支互不干扰,但是又有些数据需要共享,让这些数据对所有分支保持一致即为同步。 什么是
进程间通信 转自 https://www.cnblogs.com/LUO77/p/5816326.html
对于Android抖音短视频系统开发来说,Binder和Handler是两大利剑,分别实现了进程间和线程间的通讯。Android的消息机制,主要包括Hander,Looper,Message和MessageQueue四个数据类型,但从概念上讲,核心是线程和消息队列,一切操作围绕某个线程和它对应的消息队列展开,抖音短视频系统开发常用Handler,Looper,MessageQueue这三个类都会和同一个线程绑定。主要原理为通过Threadlocal让每个线程具备了一个消息队列,消息队列一方面作为存储消息的数据结构,另一方面负责消息具体的入列,出列,阻塞等核心操作;而Handler负责将消息发送到相应线程的消息队列中,并对出列的消息进行处理;而Looper则通过循环,不断的尝试获取消息并对获取到的消息进行分发,交给消息对应的target(Handler)来处理,然后在消息处理完毕后进行回收,回收到消息池中。
在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取,根据读取到的全局变量值执行相应的动作,达到通信协作的目的。而实时操作系统往往采用邮箱、消息队列、信号用于线程间的通信。
在Android开发领域,Handler是一项关键技能,尤其在面试中,对Handler的深刻理解和熟练运用往往是衡量一位Android开发者水平的重要标志。本文将从面试官的角度出发,针对Android Handler技术展开详细的解析,深入剖析高级疑难问题,帮助读者更好地准备面试。
目录 内核介绍 线程调度 时钟管理 线程间同步 线程间通信 内存管理 I/O 设备管理 总结 ---- 今天就开始学习有关RT-Thread的相关知识了,准备理论和实践同时进行,目前这一部分是原理理论部分,后面会结合实际的例子来加强学习,系列文章只作为个人学习笔记,如果有不对的地方也请各位大佬指出。好了,就让我们开始吧! 内核介绍 这个就是RT的内核构成了,主要实现了对象管理、线程管理及调度器、线程间通信管理、时钟管理及内存管理等等,可以说功能比较强大了,而且值得
二是线程间通信时handler的使用,包括在主线程中创建handler和在子线程中创建handler
答:i++不是原子操作,++i也不是原子操作。 原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会切换到另一个线程。 i++其实一共做了三次指令操作,第一次,从内存中读取i变量的值到CPU的寄存器,第二次在寄存器中的i自增1,第三次将寄存器中的值写入内存。这三次指令操作中任意两次如果同时执行的话,都会造成结果的差异性。 而对于++i,在多核机器上,CPU在读取内存时也可能同时读到同一个值,这样就会同一个值自增两次,而实际上只自增了一次,所以++i也不是原子操作。
多线程的东西。我确实非常爱他们。可是每每想动手写点关于他们的东西。却总是求全心理作祟。始终动不了手。
非常想写点关于多进程和多线程的东西,我确实非常爱他们。可是每每想动手写点关于他们的东西,却总是求全心理作祟,始终动不了手。
Android 系统中 , 点击图标启动一个应用进程 , 就是从 Linux 的 Zygote 进程 fork 一个子进程 , 之后该子进程就会创建 ActivityThread , 执行其中的 main 函数 , 该 main 函数就是应用的主线程 ;
进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;
进程间通信(IPC) 文件 通过读写文件来进行变量, 数据, 信息的传递 读写冲突 两个进程同时进行写, 或者一个写一个读, 造成了冲突. 解决读写冲突 互斥锁 from multiprocessing import Process, Lock def save_to_file(index, lock): with lock: with open("test.log", "a", encoding="utf-8") as f: f.write(str(i
我们知道线程是操作系统中独立的个体,但是这个单独的个体之间没有一种特殊的处理方式使之成为一个整体,线程之间没有任何交流和沟通的话,他就是一个个单独的个体,不足以形成一个强大的交互性较强的整体。
Handler是什么 想必每一个做安卓开发的人都知道Handler,就是线程间通信的桥梁,那么他的本质是什么呢,说白了就是内存共享。 Handler的是如何实现内存共享的 这就要说到Message消息,说到消息就需要说到MessageQueue消息队列,那么有了消息和消息队列,肯定少不了Looper消息泵,最后如何运行起来呢,就用到了Looper.loop()消息泵的开关,好了到这里Handler基本就明了了。 从源码理解Handler 我们用Handler发送消息都是通过sendMessage()或者po
虽然一个好的设计可以最大限度地减少所需的通信量,但是在某些时候,线程之间的通信变得非常必要 (一个线程的工作是为你的应用程序工作,但是如果这个工作的结果从未被使用过,那么它有什么用处?)线程可能需要处理新的工作请求或者向应用程序的主线程报告进度。 在这些情况下,您需要一种方法来从一个线程获取信息到另一个线程。 幸运的是,线程共享相同的进程空间的事实意味着你有很多选择进行通信。
先介绍eventfd 1 #include<sys/eventfd.h> 2 int eventfd(unsigned int initval, int flags); 使用这个函数来创建一个事件对象,linux线程间通信为了提高效率,大多使用异步通信,采用事件监听和回调函数的方式来实现高效的任务处理方式(虽然会将逻辑变得复杂)。 linux内核会为这个事件对象维护一个64位的计数器(uint64_t).并在初始化时用传进去的initval来初始化这个计数器,然后返回一个文件描述符来代表这个事件对象。 第二
我们知道,多线程是Android开发中必现的场景,很多原生API和开源项目都有多线程的内容,这里简单总结和探讨一下常见的多线程切换方式。 我们先回顾一下Java多线程的几个基础内容,然后再分析总结一些经典代码中对于线程切换的实现方式。
操作系统中的经典定义: 进程:资源分配单位。 线程:调度单位。 操作系统中用PCB(Process Control Block, 进程控制块)来描述进程。Linux中的PCB是task_struct结构体。
结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去。
-主线程的死循环一直运行是不是特别消耗CPU资源呢? 其实不然,这里就涉及到Linux pipe/epoll机制,简单说就是在主线程的MessageQueue没有消息时,便阻塞在Loop的queue.next()中的nativePollOnce()方法里,此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源
优化 Storm 拓扑性能有助于我们理解 Storm 内部消息队列的配置和使用,在这篇文章中,我将向大家解释并说明在 Storm(0.8或0.9)版本中工作进程以及相关联的 Executor 线程是如何完成内部通信的。
现在很多项目,可能Handler用的少了。但是如果你去面试,总是避免不了被问Handler原理等等。
单单具有任务切换功能自然不能称之为RTOS Kernel,一个任务往往具有多个重要的属性,优先级就是其中之一。一个任务的优先级决定了它的“尊贵”程度,越尊贵的任务越有优先占用CPU运行的权力。
这段时间看了一些Go语言相关的东西,发现Go语言的最大特性并发模型类似于C++里面的线程池,正好我们项目服务器也是用的线程池,记录下。 Go语言的并发单位是语言内置的协程,使用关键字go+函数创建一个新的协程,新创建的协程会自动加入到协程调度上下文的等待调度队列,一个协程调度上下文对应一个线程,一个协程调度上下文对应多个协程。新加入的协程会动态负载到各个调度上下文,如果所有调度上下文的平均负载较高时,总调度器会自动创建新的线程和对应的调度上下文用于工作。整体上看,是N个线程:N个调度上下文:M个协程的关
前几天,字节跳动也开始春季校园招聘了,针对的是 24 届校招和 25 届实习的同学,经过这么一周的时间,感觉互联网大厂全部都启动春招了。
4.因为项目中用到FreeRTOS,讲讲FreeRTOS的调度原理; 答:FreeRTOS从OS 操作系统支持三种调度方式:抢占式调度,时间片调度和合作式调度。 实际应用主要是抢占式调度和时间片调度
在安装Android应用程序的时候,Android会为每个程序分配一个Linux用户ID,并设置相应的权限,这样其它应用程序就不能访问此应用程序所拥有的数据和资源了。
前面一章讲了线程间同步,提到了信号量、互斥量、事件集等概念;本章接着上一章的内容,讲解线程间通信。在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取,根据读取到的全局变量值执行相应的动作,达到通信协作的目的。RT-Thread 中则提供了更多的工具帮助在不同的线程中间传递信息,本章会详细介绍这些工具。学习完本章,大家将学会如何将邮箱、消息队列、信号用于线程间的通信。
android中的一些耗时操作,例如网络请求,如果不能及时响应,就会导致主线程被阻塞,出现ANR,非常影响用户体验,所以一些耗时的操作,我们会想办法放在子线程中去完成。 android的UI操作并不是线程安全的,所以多个线程并发操作UI组件的时候,则可能导致线程安全问题。为了解决这个问题,android只允许UI线程修改UI组件。 public class MainActivity extends AppCompatActivity { TextView textView; But
Android系统庞大且错综复杂,今天小编将带领大家初探Android系统整体架构,一窥其全貌。
java的mq初始化的时候会先初始化native的mq再native的mq中又创建了native层的looper。同时native层把自己mq传入到了java中mq的mptr对象
进程间通信(interprocess communication,简称 IPC)指两个进程之间的通信。系统中的每一个进程都有各自的地址空间,并且相互独立、隔离,每个进程都处于自己的地址空间中,因此相互通信比较难,Linux 内核提供了多种进程间通信的机制。
(一)C++语言基础知识: (1)static关键字的作用: 1.全局静态变量 在全局变量前加上关键字static,全局变量就定义成一个全局静态变量。 静态存储区,在整个程序运行期间一直存在。 初始化:未经初始化的全局静态变量会被自动初始化为0(自动对象的值是任意的,除非他被显式初始化)。 作用域:全局静态变量在声明他的文件之外是不可见的,准确地说是从定义之处开始,到文件结尾。 2. 局部静态变量 在局部变量之前加上关键字static,局部变量就成为一个局部静态变量。 内存中的位置:静态存储区。 初始化:未经初始化的全局静态变量会被自动初始化为0(自动对象的值是任意的,除非他被显式初始化)。 作用域:作用域仍为局部作用域,当定义它的函数或者语句块结束的时候,作用域结束。但是当局部静态变量离开作用域后,并没有销毁,而是仍然驻留在内存当中,只不过我们不能再对它进行访问,直到该函数再次被调用,并且值不变。 3. 静态函数 在函数返回类型前加static,函数就定义为静态函数。函数的定义和声明在默认情况下都是extern的,但静态函数只是在声明他的文件当中可见,不能被其他文件所用。 函数的实现使用static修饰,那么这个函数只可在本cpp内使用,不会同其他cpp中的同名函数引起冲突。 warning:不要再头文件中声明static的全局函数,不要在cpp内声明非static的全局函数,如果你要在多个cpp中复用该函数,就把它的声明提到头文件里去,否则cpp内部声明需加上static修饰。 4. 类的静态成员 在类中,静态成员可以实现多个对象之间的数据共享,并且使用静态数据成员还不会破坏隐藏的原则,即保证了安全性。因此,静态成员是类的所有对象中共享的成员,而不是某个对象的成员。对多个对象来说,静态数据成员只存储一处,供所有对象共用。 5. 类的静态函数 静态成员函数和静态数据成员一样,它们都属于类的静态成员,它们都不是对象成员。因此,对静态成员的引用不需要用对象名。 (2) C++与C语言的区别: 设计思想上: C++是面向对象的语言,而C是面向过程的结构化编程语言 语法上: C++具有封装、继承和多态三种特性 C++相比C,增加多许多类型安全的功能,比如强制类型转换、 C++支持范式编程,比如模板类、函数模板等 (二)计算机操作系统: (1)进程与线程的概念,以及为什么要有进程线程,其中有什么区别,他们各自又是怎么同步的 ? 进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发。 线程是进程的子任务,是CPU调度和分派的基本单位,用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。 进程与线程的区别: 1.一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。 2.进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。) 3.进程是资源分配的最小单位,线程是CPU调度的最小单位; 4.系统开销:由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显著地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销。 5.通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预 6.进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂。 7.进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉 8.进程适应于多核、多机分布;线程适用于多核 。 进程间通信的方式: 进程间通信主要包括管道、系统IPC(包括消息队列、信号量、信号、共享内存等)、以及套接字so
无名管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系一般指的是父子关系。无明管道一般用于两个不同进程之间的通信。当一个进程创建了一个管道,并调用fork创建自己的一个子进程后,父进程关闭读管道端,子进程关闭写管道端,这样提供了两个进程之间数据流动的一种方式。
使用多线程时,不是多线程能提升程序的执行速度,使用多线程是为了更好地利用CPU资源!
unix操作系统里面,有一个fork操作,可以创建进程的子进程,或者说是复制一个进程完全一样的子进程,共享代码空间,但是各自有独立的数据空间,不过子进程的数据空间是拷贝父进程的数据空间的。
本文内容主要分为两大部分,第一部分是 Node.js 的基础和架构,第二部分是 Node.js 核心模块的实现。
本文作为Android系统架构的开篇,起到提纲挈领的作用,从系统整体架构角度概要讲解Android系统的核心技术点,带领大家初探Android系统全貌以及内部运作机制。虽然Android系统非常庞大且错综复杂,需要具备全面的技术栈,但整体架构设计清晰。Android底层内核空间以Linux Kernel作为基石,上层用户空间由Native系统库、虚拟机运行环境、框架层组成,通过系统调用(Syscall)连通系统的内核空间与用户空间。对于用户空间主要采用C++和Java代码编写,通过JNI技术打通用户空间的Java层和Native层(C++/C),从而连通整个系统。
前言:本文根据最近做的一次分享整理而成,希望能帮忙大家深入理解Node.js的一些原理和实现。
作为一名合格的程序猿/媛,对于进程、线程还是有必要了解一点的,本文将从下面几个方向进行梳理,尽量做到知其然并知其所以然:
经常会有人问:有必要去研究Handler和Binder么?感觉工作中好像用不到呀。
实例:web服务器。来一个建立一个线程,断了就销毁线程。要是用进程,创建和销毁的代价是很难承受的。
管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?
1.管道(Pipe)及有名管道(namedpipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信 2.信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数) 3.消息队列:消息队列是消息的链接表,包括Posix消息队列systemV消息队列.有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息.消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式.是针对其他通信机制运行效率较低而设计的.往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥. 4.信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。 5.套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信.起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和SystemV的变种都支持套接字. PHP版本实现:https://www.jianshu.com/p/08bcf724196b
哈喽~,大家好,我是千羽。下面分享我认识的一位大佬华中科技大学985硕,字节秋招一面, 这一面整体上问了计算机基础+基本算法+项目场景题。
领取专属 10元无门槛券
手把手带您无忧上云