上节我们讲了如何安装paramiko,这节我们讲如何使用paramiko连接服务器
今天就来好好学习下Linux下如何查看CUP的使用率: 监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。 对于每一个CPU来说运行队列最好不要超过3,例如,如果是双核CPU就不要超过6。如果队列长期保持在3以上,说明任何一个进程运行时都不能马上得到cpu的响应,这时可能需要考虑升级cpu。另外满负荷运行cpu的使用率最好是user空间保持在65%~70%,system空间保持在30%,空闲保持在0%~5% 。
前面介绍了如何运用Python获取Oracle数据库的信息以及将数据存入MySQL数据库中
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
在日常运维工作中,大部分企业都会搭建自己的可视化监控大屏,但是对于小型企业或者是个人玩家来说这样做的成本和难度会大大提高,下面我就分享一个Shell脚本监控Linux服务器的CPU、磁盘、内存。
在上文性能基础之理解Linux系统平均负载和CPU使用率,我们详细介绍了 Linux 系统平均负载的相关概念,本文我们来做几个案例分析,以便于加深理解。
由于项目的需要,需要做一个简单监控服务器的CPU利用率、CPU负载、硬盘使用率、内存利用率和服务器的各个端口的开启情况的程序,并把结果通知到监控平台,如果出现异常,监控平台打电话或者发短信通知给具体的运维人员
存储、内存和 CPU(中央处理器)等系统资源不足会极大地影响应用程序的性能。因此,监控这些组件至关重要。
1、简介 存储、内存和 CPU(中央处理器)等系统资源不足会极大地影响应用程序的性能。因此,监控这些组件至关重要。
无论你是 Linux 系统管理员或是 DevOps 工程师,你都会在监控服务器性能指标的时候花费很长时间。
最新将生产环境的服务器版本统一升级了一下,其中有一台(4H/8G)近两天天天CPU使用率报警(阀值>95%,探测周期60s,触发频率6次),而且load acerage也居高不下,检查了各个系统应用软件的资源使用都没有问题,也将一些可能导致CPU使用率高的软件stop掉,报警依旧。
在Linux系统中,Top命令是一种强大的系统监控工具,可以提供实时的系统性能信息,包括CPU、内存、进程等方面的数据。其中,检查和排序CPU使用率是Top命令的一项重要功能。本文将详细介绍如何使用Top命令来检查和排序CPU使用率,帮助你更好地了解系统的CPU性能。
https://www.cnblogs.com/poloyy/category/1814570.html
CPU使用率:CPU的使用率 平均负载:单位时间内的活跃线程数 用户时间:CPU在用户进程上的实际百分比 系统时间:CPU在内核上花费的实际百分比 空闲时间:系统处于在等待IO操作上的时间总和 等待:CPU花费在等待IO操作上的时间总和 Nice时间:CPU优先执行的时间百分比
尽管使用了繁重的系统监控工具,但一个简单的命令可以显示系统上当前的 CPU 和内存使用情况,从而节省您的时间和精力。使用命令方便、轻巧,并且不会占用太多系统资源来显示正在进行的 CPU 和内存负载。在这篇文章中,我们将看到使用这些命令按内存和 CPU 使用率显示正在运行的进程的ps命令。
大家有没这种感觉,不论甲方还是乙方,拿到一套数据库我们很难快速的知道他的配置,数据库状态以及性能状态
从CPU发明到现在,有非常多种架构,从我们熟悉的X86,ARM,到不太熟悉的MIPS,IA64等
%us:表示用户空间程序的cpu使用率(没有通过nice调度) %sy:表示系统空间的cpu使用率,主要是内核程序。 %ni:表示用户空间且通过nice调度过的程序的cpu使用率。 %id:空闲cpu %wa:cpu运行时在等待io的时间 %hi:cpu处理硬中断的数量 %si:cpu处理软中断的数量 %st:被虚拟机偷走的cpu 注:99.0 id,表示空闲CPU,即CPU未使用率,100%-99.0%=1%,即系统的cpu使用率为1%。
通过获取Linux中的 /proc/stat 文件中的内容可以获取系统内存的详细信息:
傍晚时分,你坐在屋檐下,看着天慢慢地黑下去,心里寂寞而凄凉,感到自己的生命被剥夺了。当时我是个年轻人,但我害怕这样生活下去,衰老下去。在我看来,这是比死亡更可怕的事。--------王小波
上一章我们介绍了shell编程的语法和应用,在实际生产环境中,Linux的系统运维者经常会查看系统中的各项性能、参数,为了提高查看效率,我们可以编写一些监控脚本以便系统的自动化运维。
在 Linux 系统下,有许多用于性能分析和调试的命令和工具,可以帮助您识别系统瓶颈、优化性能以及调查问题。本文将介绍在性能分析过程中,可能使用到的一些命令。
前不久,看到了明哥写的如何用Python发送警告通知到企业微信,想起来之前写过用Pytho发送指定格式数据到钉钉的服务,本文将之前的代码重构下,变成一个:利用Python监控服务器数据,然后有异常就通过钉钉发送给用户。
在 Linux 系统中的 /proc/stat 文件中存储了CPU 活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。不同内核版本中该文件的格式可能不大一致,以下通过实例来说明数据该文件中各字段的含义。
利用psutil库可以获取系统的一些信息,如cpu,内存等使用率,从而可以查看当前系统的使用情况,实时采集这些信息可以达到实时监控系统的目的。
我们经常会使用 top 命令来查看系统的性能情况,在 top 命令的第一行可以看到 load average 这个数据,如下图所示:
psutil是一个跨平台库能够轻松实现获取系统运行的进程和系统利用率(包括CPU、内存、磁盘、网络等)信息。它主要用来做系统监控,性能分析,进程管理。它实现了同等命令行工具提供的功能,如ps、top、lsof、netstat、ifconfig、who、df、kill、free、nice、ionice、iostat、iotop、uptime、pidof、tty、taskset、pmap等。目前支持32位和64位的Linux、Windows、OS X、FreeBSD和Sun Solaris等操作系统.
和top一样,可以看到所有cpu的使用情况。如果需要查看某颗cpu的使用可以用-P参数。例如指定显示0号cpu 的使用情况。
在我们项目部署上线的时候,我们是不是会经常去Linux服务器上查查服务器的CPU使用率,或者是运维经常会盯Linux的CPU使用率,发现监控报了60%的一般就会报警了,到了100%那就惨啦,做我开发的我们如果自己程序运行时CPU使用率一直是100%的话,那么,我们加班肯定逃不掉了,更打击我们自己的强大的自尊心。今天我就将我们线上之前有个100%的CPU给大家讲解下,然后教大家怎么去定位然后发现到具体的函数,然后去修改它就行了
CPU 利用率,又称 CPU 使用率。顾名思义,CPU 利用率用于描述 CPU 的运行情况,反映了一段时间内 CPU 被程序占用的情况。使用率越高,表示计算机在该时间段内运行了更多的程序,反之则较少。CPU 的利用率与其性能直接相关。
https://www.cnblogs.com/poloyy/category/1806772.html
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
运维工程师经常使用 Python 编写脚本程序来做监控系统运行的状态。如果自己手动使用 Python 的标准库执行系统命令来获取信息,会显得非常麻烦。既要兼容不同操作系统,又要自己处理解析信息。为了解决的痛点问题,psutil 就横空出世。它的出现无疑是运维工程师的福音。运维小伙伴通过它执行一两行代码即可实现系统监控。
相信移动端高度普及的现在,大家或多或少都会存在电量焦虑,拥有过手机发热发烫的糟糕体验。而发热问题是一个长时间、多场景的指标存在,且涉及到端侧应用层、手机 ROM 厂商系统、外界环境等多方面的影响。如何有效衡量发热场景、定位发热现场、以及归因发热问题成为了端侧应用层发热监控的面前的三座大山。本文通过得物 Android 端侧现有的一些监控实践,不深入功耗计算场景无法自拔,优先聚焦于发热场景本身,希望能给大家一些参考。
之前学习 Linux 命令的时候有学到 man 的使用,还有它的进阶版本 info 他可以更详细的查询命令手册
导读:虽然已经有很多分析工具 jvisualvm,jstat,jmap,jstack,Memory Analyzer等。但可能不是大杂烩,或者线上无法分析等。所以看看arthas的功能,好用就用它了
glances是一个基于python语言开发,可以为linux或者UNIX性能提供监视和分析性能数据的功能。glances在用户的终端上显示重要的系统信息,并动态的进行更新,让管理员实时掌握系统资源的使用情况,而动态监控并不会消耗大量的系统资源,比如CPU资源,通常消耗小于2%,glances默认每两秒更新一次数据。同时glances还可以将相同的数据捕获到一个文件,便于以后对报告进行分析和图形绘制,支持的文件格式有.csv电子表格格式和和html格式。
项目中的一个需求是获取操作系统的相关信息, 在网上找了相关的资料,发现了一个好的玩意,就是Sigar,它是通过java api的方式来调用程序,基本上能够获取操作系统的全部信息,感觉挺强大的。Sigar(System Information Gatherer And Reporter),是一个开源的工具,提供了跨平台的系统信息收集的API,核心由C语言实现的,它可以被多种语言调用,包括C/C++、java、Perl、Ruby、PHP等,可以收集的信息包括:
通过前两节对平均负载和 CPU 上下文切换的学习,我相信你对 CPU 的性能已经有了初步了解。不过我还是想问一下,在学这个专栏前,你最常用什么指标来描述系统的 CPU 性能呢?我想你的答案,可能不是平均负载,也不是 CPU 上下文切换,而是另一个更直观的指标—— CPU 使用率。
--vm-bytes B 指定 malloc() 时内存的字节数,默认256MB --vm-hang N 指定执行 free() 前等待的秒数 -d N、 --hdd N
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
Exporter是Prometheus的指标数据收集组件。它负责从目标Jobs收集数据,并把收集到的数据转换为Prometheus支持的时序数据格式。和传统的指标数据收集组件不同的是,他只负责收集,并不向Server端发送数据,而是等待Prometheus Server 主动抓取,node-exporter 默认的抓取url地址:http://ip:9100/metrics。
谈到让Go程序监控自己进程的资源使用情况,那么就让我们先来谈一谈有哪些指标是需要监控的,一般谈论进程的指标最常见的就是进程的内存占用率、CPU占用率、创建的线程数。因为Go语言又在线程之上自己维护了Goroutine,所以针对Go进程的资源指标还需要加一个创建的Goroutine数量。
Linux内核是一个令人难以置信的马戏团的表演者,可以很小心的玩弄许多进程和它们的资源需求,来保证你的服务器一直嗡嗡作响。内核也是关于公平的一切:当有资源竞争时,内核试图公平的分发这些资源。 然而,如果你有一个需要优先级的重要进程怎么办?一个低优先级的进程呢?或者,限制一组进程的资源呢? 这需要你的帮助,因为没有你的帮助,内核是无法知道哪些是CPU的关键进程。 所有进程最开始都拥有相同的优先级,Linux内核会为每个任务分配均匀的CPU调度时间。总不能让一个CPU密集型的进程只运行在低优先级吧?所以,你需要
1.文档编写目的 首先说明什么场景下适合使用CGroup,为什么会在集群YARN 中对CPU 进行Vcore数超配的情况下同样一个作业,同样的资源参数,有时候处理很快,有时候处理很慢,出现作业的运行效率无法预估情况? 当我们期望通过合理分配CPU的使用率,使应用预期性能的运行,排除其他因素的影响下,如应用中每分配一个Vcore,预估它能处理多少数据,就需要启用CGroup对CPU进行严格的使用率限制来实现。 在混合工作负载的示例是运行 MapReduce 和 Storm-on-YARN 的集群。MapRed
平常处理服务器的问题遇到的最多的是负载高了,内存高了,io高了等问题,这里最明显的表现就是相关的监控指标了,对于诊断这种问题起到事半功倍的效果。
Part1Linux性能优化 1性能优化 性能指标 高并发和响应快对应着性能优化的两个核心指标:吞吐和延时
CPU使用率是性能测试是一项重要指标,CPU占用过高会使得设备运行程序出现卡顿与发热,甚至出现应用程序Crash,影响用户体验。在排除硬件环境的限制下,应用程序应该尽可能少的占用CPU。
领取专属 10元无门槛券
手把手带您无忧上云