在嵌入式系统里,以太网是一个基本的接口,既用于调试,也用于数据传输。所以在单板调试过程中,以太网是一个基本的任务。如果以太网工作正常,也可以说是一个重要的里程碑。 Xilinx MPSoC支持多个网卡,应用成熟,下面是常见的调试思路。
可以看到PHY的数据是RJ45网络接口(网线口)穿过了的差分信号,而PHY作用就是将差分信号转为数字信号,这块内容不用深究,制造商都设计好了。那我们干什么呢?(主要是对phy芯片进行模式选择,比如工作速率,工作模式)
在以太网通信中,设备之间的物理局链路均由 PHY 芯片建立。PHY 芯片内部含有一些列寄存器,用户可通过这些寄存器来配置 PHY 芯片的工作模式以及获取 PHY 芯片的若干状态信息,如连接速率、双工模式、自协商状态等。PHY 内部寄存器的读写通过 MDIO 接口进行。
从硬件的角度看,以太网接口电路主要由 MAC(Media Access Control,MAC)控制器和物理层接口 PHY(Physical Layer,PHY)两大部分构成。如下图所示:
网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。
本篇文章要写的是调试Xilinx网络IP时踩到的一个坑,也是控制PHY芯片时的一个坑,板卡上的PHY芯片是非常经典的88E1111,使用MDIO接口控制。
前面文章我们邀请了思科网络资深专家介绍数通专题系列,专家介绍了以太网自协商相关方面9的文章。
测试方法:使用TestCenter向被测板子上的千兆以太网口打流,在FPGA内部通过自回环从源端口返回给TestCenter,通过看TestCenter控制界面上显示结果判断自回环是否正确。
笔者以曾经实践过的Broadcom公司的BCM53286的四个1000BASE-X Serdes口举例[与自协商相关的寄存器属于IEEE802.3标准寄存器,故不同厂家不同型号的PHY该部分实现大同小异],与1000BASE-X自协商相关的7个寄存器内容分别如下。
说是网络,其实是网卡驱动。而且是针对于FREESCALE芯片的FEC端的驱动,我不知道别的芯片厂商的FEC模块是怎么样的, 但就我接触过的几款FREESCALE的芯片来看,比如基于POWERPC的860T和ARM系列的MX27等,他们的FEC有一个明显的特点就是 都是由BD和一个DMA缓冲组成,而这个DMA是专用的,也就是只是给FEC使用,区别于芯片内的DMAC模块。我们先来从fec.c这 个与硬件直接相关的看起: 首先找到module_init(fec_enet_module_init);这里fec_enet_module_init为入口点 fec_enet_module_init() 首先调用fec_arch_init,它调用gpio_fec_active设置GPIO为FEC模式,然后如果有电源管理的话,就调用 mxc_fec_power_on开启电源。接着调用clk_get,clk_enable, clk_put设置FEC的CLOCK,这里退出fec_arch_init函数,接 着循环FEC_MAX_PORTS次,也就是有几个FEC就循环几次,在这里我们只有一个FEC,所以这个循环不用管。接下来因为我们 用的是以太网,所以调用dev = alloc_etherdev(sizeof(struct fec_enet_private));申请一个以太网设备描述,其中 struct fec_enet_private是用来描述FEC专有的数据结构。如下: /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fec_enet_private { /* Hardware registers of the FEC device */ volatile fec_t *hwp; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ unsigned char *tx_bounce[TX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct sk_buff* rx_skbuff[RX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ void * cbd_mem_base; /* save the virtual base address of rx&tx buffer descripter */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ struct net_device_stats stats; uint tx_full; spinlock_t lock; uint phy_id; uint phy_id_done; uint phy_status; uint phy_speed; phy_info_t const *p
[表格] Notice: 有的PHY有低功耗模式,必须正确设置非低功耗模式才能正常读写phy寄存器配置。 低功耗模式现象: 1,复位后再解除复位LED一直不亮。正常的模式下复位后解除复位LED会一直亮。 2,用示波器抓取mdc和mdio波形,读PHY寄存器没有数据响应。
在飞凌嵌入式OKA40i-C开发板上虽然只有一个网口,但全志A40i-H处理器本身是有两个网络控制器的,因此在飞凌嵌入式提供的产品资料中提供了双网口解决方案。有的工程师小伙伴在开发过程中会遇见一些网卡的设计问题,今天小编为大家分享3种在使用OKA40i-C开发板时容易遇到的网卡软件问题以及排查思路。
本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的设计方法。
本章节为大家讲解STM32自带的MAC和PHY芯片的基础知识,为下一章底层驱动的讲解做一个铺垫。
本章节为大家讲解RL-TCPnet的底层驱动,主要是STM32自带MAC的驱动实现和PHY的驱动实现。
以太网自协商是一种自动配置网络连接的机制,它允许网络设备根据另一端设备的连接速度和双工模式,自动将自己的速度调节到最高的公共水平,即线路两端能具有的最快速度和双工模式。
CPU用的是Armada-3720,内核是https://github.com/MarvellEmbeddedProcessors/linux-marvell 里面18.12版本,uboot使用的是https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/tree/u-boot-2018.03-armada-18.12。两路网口,一路是RGMII模式(lan1),另外一路是SGMII模式(lan2)。最近发现有时系统起来后用PC去ping lan2会ping不通,phy可以正常识别,执行ifconfig down/up也可以看到正常的打印信息。
实现网络通信实质上是PHY与MAC及RJ45接口实现信号传输。MAC 就是以太网控制器,MAC属于数据链路层,主要负责把数据封装成帧,对帧进行界定实现帧同步。对MAC地址和源MAC地址及逆行相应的处理并对错误帧进行处理。PHY属于物理层,在以太网控制器中负责物理层功能的芯片叫PHY芯片,因为网线上传输的是模拟信号而MAC发出或接收的信号为数字信号所以PHY主要负责对网络数据的编解码处理以及一些网络状态的控制。RJ45就是我们常用的网口座子。
1、 硬件配置,通过电阻上下拉确定;6096的硬件配置不可以错,其在port status寄存器状态中有相应的寄存器位体现硬件配置的工作模式。
RK33999使用synopsys dwc3的USB3.0控制器IP。早期的初始化需要在两个模块中进行,一个在rockchip官方提供的驱动中初始化,位于drivers/usb/dwc3/dwc3-rockchip.c文件中,主要初始化和CPU紧密相关的内容,如时钟、复位、电源、extcon(用于USB模式切换),另一个在synopsys提供的驱动中初始化,位于drivers/usb/dwc3/core.c文件中,这部分和USB3.0控制器密切相关,如USB3.0控制器内部寄存器地址、USB3.0的PHY、中断等。只有两个模块都初始化完毕,USB3.0控制器才能正常工作。本节只分析USB驱动早期初始化部分。
上图来自 瑞昱半导体 (RealTek) 的 RTL8201F 系列网卡 PHY 芯片手册。按OSI 7层网络模型划分,网卡PHY 芯片(图中的RTL8201F)位于物理层,对应的软件层就是本文讨论的 PHY 驱动层;而 MAC 位于 数据链路层,也是通常软件上所说的网卡驱动层,它不是本文的重点,不做展开。另外,可通过 MDIO 接口对 PHY 芯片进行配置(如PHY芯片寄存器读写),而 PHY 和 MAC 通过 MII/RMII 进行数据传输。
PHY 芯片通常带有回环(Loopback)功能,用于 PHY 通信链路的测试。本文主要讨论三种常用 PHY 芯片的回环功能,并使用 Broadcom 的 B50612D 芯片进行 PHY 回环测试。
电脑上位机将一幅 1024*768 图片通过双绞线(网线),发送给板卡网口(RJ45接口),RJ45接口将数据传输给网卡(PHY芯片),PHY 芯片将差分信号转换成双沿数据,IDDR将双沿数据转换成单沿数据传输给 FPGA,FPGA 处理完成后将图像数据缓存到DDR3 中,DDR3 中的图像数据使用 UDP 协议传回 PC 机,同时将 DDR3 中数据使用 HDMI 传输到显示器上。
linux下设备驱动都有一套标准的结构,字符设备,块设备,网络设备都是自己的一套框架。编写驱动只需要把内核的框架搞清楚,然后照着结构填入参数,注册进内核,在应用层就可以按照标准的形式调用了。 对于网络设备而言,主要目的就是网络数据的收发,编写驱动时将linux网络设备驱动里的接口与实际网卡硬件的操作接口对应上,应用层就可以操作网卡完成网络通信了。底层驱动里编写网卡驱动与单片机一样。
SGMII作为1000BASE-X的孪生兄弟。它俩通常是同一个芯片物理接口的复用功能。很多小伙伴经常对它俩的基本概念和应用场景有混淆。下面笔者对SGMII接口进行一个系统的梳理。
2、专题二: 思科网络资深专家介绍以太网双绞线自协机制 (FLP Basepage)
流控协商根据应用场景需要将MultiGBAE-T分为“原生模式”和“兼容模式”两大类进行讨论。
本篇文章主要讲解如何在STM32F103工程里添加移植LWIP协议,最终完成TCP服务器、TCP客户端的通信测试。 网卡采用的是DM9000,工程代码中,采用STM32的FSMC接口来驱动DM900网卡,DM9000是并口网卡,引脚多,但是速度快,也可以采用其他网卡,SPI协议的、UART协议的等。 比如:ENC28J60。 因为主要是讲LWIP协议栈的移植,所以网卡相关的代码就没有细说(需要准备一个网卡可以正常通信的工程,再移植)。
之前有介绍过TCP/IP协议的实现是通过轻量级LWIP协议实现的,具体在FPGA中实现又可以分为多种方式,具体如下:
I.MX6UL/ULL 有两个网络接口 ENET1 和 ENET2,I.MX6U-ALPHA 开发板提供了这两个网络接口,其中 ENET1 和 ENET2 都使用 LAN8720A 作为 PHY 芯片。
2 在probe里 申请网络结构体net_device、对相关变量函数赋值,注册网络结构体net_device
概述:由于近期要使用以太网PHY芯片,于是在网上查找各种资料,学习这部分的知识,这篇文章是对当前的学习做一个汇总。海翎光电的小编目前也是在学习PHY,所以难免会有错误不足,有什么需要更正补充的,欢迎大家一起讨论交流。
距上次88e1512的sgmii不稳定的问题已经过去好久,这几天测试部发现sgmii网口偶尔会出现丢包现象,设备是做过EMC测试(静电,群脉冲,浪涌)的,经硬件工程师排查EMC实验造成phy损坏的概率很低,但是设备上下电网线插着时出现CRC错误/丢包的很容易出现,终端里面一直会打印如下错误信息,
前面文章我们邀请了思科网络资深专家介绍数通专题系列,专家介绍了以太网自协商相关方面的文章。
复制一份imx_v6_v7_defconfig,这里我命名为dfos_mini_defconfig。
曾几何时,网络处理器是高性能的代名词。为数众多的核心,强大的转发能力,定制的总线拓扑,专用的的指令和微结构,许多优秀设计思想沿用至今。Tilera,Freescale,Netlogic,Cavium,Marvell各显神通。但是到了2018年,这些公司却大多被收购,新闻上也不见了他们的身影,倒是交换芯片时不时冒出一些新秀。
MultiGBASE-T自协商,主要协商的内容为“速度双工”、“主从”两个关键项(协商失败,链路不能正常建立链接)和“流控”、“EEE”、“Fast Retrain”、“PMA training reset request” 、“PHY short reach mode” 、“10GBASE-T loop timing”六个非关键项(协商失败,链路能正常建立链接)。下面先介绍MultiGBASE-T自协商的BasePage和ExtendedNextPage的bits分配, 然后就这八大类自协商内容进行阐述。
当电源控制器看到 suspend_detected 被激活(并且在状态寄存器中设置了电源门控启用位)时,它会启动掉电序列。该序列如图 8-2 所示,描述如下:
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=95243 第6章 RL-TCPnet底层驱动说明 本章节为大家讲解RL-TCPn
总结:上面已经将phy的状态设置成了 phydev->state = PHY_READY,同时完成了emac接口下的phy设备驱动注册,接下来将分析如何使用该phy设备驱动。
据此推算,貌似单一线路,网络传输速度也就1.5*(1/4*10^6) = 375M/bs
建立时间和保持时间是FPGA时序约束中两个最基本的概念,同样在芯片电路时序分析中也存在。
存储器: ROM(只读),Flash(NOR, NAND),RAM(随机存取存储器)
ifconfig用于查看和更改网络接口的地址和参数,包括IP地址、网络掩码、广播地址,使用权限是超级用户。
通过之前的介绍<FPGA和USB3.0通信-USB3.0协议介绍>,我们大致了解到USB3.0整个协议异常复杂,就连物理层都需要SerDes(FPGA实现的情况)才可以,所以目前使用USB3.0时,搭档FPGA的最优解就是外置USB3.0 PHY片。
最早的以太网都是10M 半双工的,所以需要CSMA/CD 等一系列机制保证系统的稳定性。随着技术的发展,出现了全双工,接着又出现了100M,以太网的性能大大改善。但是随之而来的问题是:如何保证原有以太网络和新以太网的兼容?
领取专属 10元无门槛券
手把手带您无忧上云