有个叫atest的东西 ls -l atest 查不出来是什么 下面删也删不掉 但是可以用mv改名字,它放在/目录下,用ls /导致不能显示 如果操作,请大侠指点, 顺便问下什么时候会导致ls / 不显示,谢谢! # s
exp算是一个经典的数据导出工具了。对于小数量的表来说,个人还是比较钟爱exp。毕竟expdp还需要配置directory而且还在服务端。exp在数据量小的情况下速度还是很理想的。 关于exp导出的这个问题,已经拖了很久了,自己也排查了各种方法。通过查看wait event,查看exp的debug日志,都没有得出一些很有说服力的内容,今天下定决心来细细琢磨琢磨这个问题。有了一点收获。 之前在测试系统中碰到一个问题,导出一个比较大的分区表,分区数很多,其中有些分区里面没有数据,但是通过exp导出这些没有数据
#include <semaphore.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h>
这个是从库,没有读业务和其他下游同步,风险可控。但是大家还是要谨慎。我执行这个命令是因为我搜到的菜鸟教程的split命令案例错误导致我生成了大量小文件。没想到大名鼎鼎的菜鸟教程也会有问题,大家还用man或者tldr查看帮助手册吧。
tcpdump 作为计算机网络排查的一大神器,掌握了上文所说的技巧,可以让你随时随地得心应手的掌握网络应用的一举一动。
我们都知道,在计算机的世界,建立连接都是需要依靠五元组的(源ip,源端口,目的ip,目的端口,协议),而在实际用户使用过程中,浏览器会帮我们识别和管理源ip和端口以及协议(http,https),协议确定后其实目的端口也就确定了(80或443). 因此整个DNS系统要解决的问题就是将用户在浏览器中输入的域名最终转换成可识别的目的ip,进而进行连接通信。下面以一个简单例子来分析下dns解析的过程.
strace 是一个集诊断、调试、统计于一体的工具,我们可以使用 strace 跟踪程序的系统调用和信号传递来对程序进行分析,以达到解决问题或者是了解程序工作过程的目的。当然 strace 与专业的调试工具比如说 gdb 之类的是没法相比的,因为它不是一个专业的调试器。
其实他说第二点问题的时候我就已经猜到问题所在了,那不就是远程挂载的磁盘非正常的掉了,然后就会造成这个问题。但是他说 ISCSI 这个玩意的时候我不知道是啥,于是查了一下,有兴趣的同学可以看看这是:https://zhuanlan.zhihu.com/p/60986068,看的出来他是一个网络存储,那么就更加坚定我的想法了,开始指挥解决问题。
最近收拾东西,从一堆杂物里翻出来尘封四年多的树莓派 3B 主机来,打扫打扫灰尘,接上电源,居然还能通过之前设置好的 VNC 连上。欣慰之余,开始 clone 我的 git 项目,为它们拓展一个新的平台。在执行 cnblogs 项目 (参考《博客园排名预测 》) 对应的绘图命令时,趋势图、预测图是生成了,但没有自动打开图片,这个问题经过一番探索居然解决了,这篇文章就来分享一下解决问题的过程。
strace 命令是一个集诊断、调试、统计于一体的工具,我们可以使用 strace 对程序的系统调用和信号传递的跟踪结果来对程序进行分析,以达到解决问题或者是了解程序工作过程的目的。当然strace 与专业的调试工具比如说 gdb 之类的是没法相比的,因为它不是一个专业的调试器。
在4.4之前的版本中,Swoole一直不支持CURL协程化,在代码中无法使用curl。由于curl使用了libcurl库实现,无法直接hook它的socket,4.4版本使用Swoole\Coroutine\Http\Client模拟实现了curl的API,并在底层替换了curl_init等函数的C Handler。
Snap是Canonical为使用Linux内核的操作系统开发的软件打包和部署系统。这些包(称为 snaps)和使用它们的工具 snapd 可在一系列 Linux 发行版中工作。
今天碰到个很诡异的问题,在装了Oracle Clinet的机器,不同路径下执行指令sqlplus,回显不同。
上节详细学习了进程的创建,通过实例学习了fork和vfork的区别。本节将学习线程的创建,只涉及应用层的线程,内核线程的创建在后面学习。
c-ares 是一个异步 DNS 解析库。它适用于需要在不阻塞的情况下执行 DNS 查询或需要并行执行多个 DNS 查询的应用程序。
在博客 【Linux 内核 内存管理】虚拟地址空间布局架构 ⑦ ( vm_area_struct 结构体成员分析 | vm_start | vm_end | vm_next | vm_prev |vm_rb) 中 , 分析了 vm_start vm_end vm_next vm_prev vm_rb 这
linux系统上使用gcc生成可执行程序:gcc -g -W helloworld.c -o helloworld
最近在工作中遇到一个mmap使用相关的问题,造成了一定的困惑,于是花了些时间补了下 mmap的功课,在这里分享给大家,错误和不足之处大家多指教。
mmap/munmap接口是用户空间的最常用的一个系统调用接口,无论是在用户程序中分配内存、读写大文件,链接动态库文件,还是多进程间共享内存,都可以看到mmap/munmap的身影。mmap/munmap函数声明如下:
看泉子的一篇文章:JVM源码分析之Jstat工具原理完全解读 - 你假笨 里提到了两个JVM参数,可以控制perfdata文件是否共享,引用泉子对这两个参数的解释:
unix访问文件的传统方法使用open打开他们,如果有多个进程访问一个文件,则每一个进程在再记得地址空间都包含有该文件的副本,这不必要地浪费了存储空间。下面说明了两个进程同时读一个文件的同一页的情形,系统要将该页从磁盘读到高速缓冲区中,每个进程再执行一个内存期内的复制操作将数据从高速缓冲区读到自己的地址空间。
今天看到一个比较好玩的东西,虽然原理很简单,但是使用golang来做还是挺新鲜,所以还是分享给大家。
PlatformData 是管理线程中,不同系统中的数据。这里只看linux系统。只保存了线程id。
个人名言:“同一条河里淹死两次的人,是傻子,淹死三次及三次以上的人是超人”。经历过上次悲催的面试,决定沉下心来,好好的补充一下基础知识点。本文是这一系列第一篇:进程间通讯之mmap。
Linux下动态库是通过mmap建立起内存和文件的映射关系。其定义如下void* mmap(void* start,size_t length,int prot,int flags,int fd,off_t offset);,在第一个参数start为NULL的时候系统会随机分配一个地址,我们可以通过示例来看mmap映射地址的流程。
文章目录 一、vm_area_struct 结构体成员分析 二、vm_area_struct 结构体完整源码 一、vm_area_struct 结构体成员分析 ---- vm_area_struct 结构体中相关成员解析 : unsigned long vm_start 成员 : 虚拟内存空间 起始地址 ; unsigned long vm_start; /* Our start address within vm_mm. */ unsigned long vm_end 成员 : 虚拟内存空间 终止地址
Linux下的进程间通信也可以使用mmap的内存共享映射来实现,mmap的作用就是把磁盘文件的一部分直接映射到进程的内存中,那么进程就可以直接对该内存文件进行操作,mmap也设置了两种机制:共享和私有,如果是共享映射,那么在内存中对文件进行修改,磁盘中对应的文件也会被修改,相反,磁盘中的文件有了修改,内存中的文件也被修改。如果是私有映射,那么内存中的文件是独立的,二者进行修改都不会对对方造成影响。通过这样的内存共享映射就相当于是进程直接对磁盘中的文件进行读写操作一样,那么如果有两个进程来mmap同一个文件,就实现了进程间的通信。磁盘中的文件通过mmap函数来实现映射,然后通过munmap函数取消映射。先来看一下函数的原型:
上面的主文件我们只需要关注2819、2835、2836以及2844四行,前三行分别对应的是socket的创建,以及绑定端口和监听事件。而后面的poll则是一个等待事件函数,我们接下来看看方法描述。
在之前的博客 【Linux 内核 内存管理】虚拟地址空间布局架构 ⑦ ( vm_area_struct 结构体成员分析 | vm_start | vm_end | vm_next | vm_prev |vm_rb) 中 , 分析了 vm_start vm_end vm_next vm_prev vm_rb 这
调用 mmap 系统调用 , 先检查 " 偏移 " 是否是 " 内存页大小 " 的 " 整数倍 " , 如果偏移是内存页大小的整数倍 , 则调用 sys_mmap_pgoff 函数 , 继续向下执行 ;
摘自:http://c.biancheng.net/cpp/html/138.html
mmap是linux中提高文件读写效率的一种手段,这里简单整理一下mmap的原理和使用。
本实验实现mmap和munmap系统调用来更好的控制进程地址空间,可以向数组那样读写文件,写的数据放在buffer cache可以被其他进程所看到。
---- 1.为什么要使用大页内存 了解操作系统内存管理的人一般都知道操作系统对内存采用多级页表和分页进行管理,操作系统每个页默认大小为4KB。如果进程使用的内存过大,比如1GB,这样会在页表中占用 1GB / 4KB = 262144个页表项,而系统TLB可以容纳的页表项远小于这个数量。当多个内存密集型应用访问内存时,会造成过多的TLB未命中,因此在特定情况下会需要减少未命中次数,一个可行的办法就是增大每个页的尺寸。操作系统默认支持的大页是2MB,当使用1GB内存时,在页表中将占用 1GB / 2MB
在第六章中,我通过匿名共享内存的方式解决Binder通信是无法传递大数据的问题,一次Binder通信最大可以传输是1MB-8KB(PS:8k是两个pagesize,一个pagesize是申请物理内存的最小单元)
进程是 UNIX/Linux 用来表示正在运行的程序的一种抽象概念,所有系统上面运行的的数据都会以进程的形态存在。
如在我的电脑上strace -o 1.txt pkill goldendict,strace就给出了3287行的信息。。。如果加上参数-e trace=process,那么就只有4行:
https://man7.org/linux/man-pages/man2/mmap.2.html
一个进程的虚拟地址空间主要由两个数据结来描述,一个是 mm_struct,一个是 vm_area_structs。
mmap() 系统调用能够将文件映射到内存空间,然后可以通过读写内存来读写文件。我们先来看看 mmap() 系统调用的用法吧,mmap() 函数的原型如下:
mmap 函数的作用是 将 文件 映射到 内存中 , 映射的单位必须是 PAGE_SIZE ;
上一篇博客 【Android 逆向】Android 进程注入工具开发 ( 注入代码分析 | 远程调用 目标进程中 libc.so 动态库中的 mmap 函数 一 | mmap 函数简介 ) 中介绍了 mmap 函数 ;
1、mmap()函数用来将文件或者设备映射到内存中。 2、mmap的特点是按需调页。最开始只申请vma,并不调真正的页。当对某些页进行引用的时候,会引起一个缺页中断,再将页面调入到内存当中,这样避免了对内存的浪费。
什么是管道? 可以理解为内存中的一个缓冲区,用于将某个进程的数据流导入,由某一个进程导出,实现通信。 再通俗的说,看图:
共享内存区是最快的IPC形式,一旦这样的内存区映射到共享它的进程的地址空间,这些进程的数据传递就不再涉及内核。
由于内核CPU为sy 6.5%并不是很高,而等待I/O的CPU时间为93.8%是比较高的,另外在进程信息中心可以看到Python3的进程CPU占有率为7.2%,也是比较高的,它的PID为16520。可以定位在I/O上出现了瓶颈,可能是Python3引起的。于是用iostat来分析。
mmap/munmap接口是用户空间的最常用的一个系统调用接口,无论是在用户程序中分配内存、读写大文件,链接动态库文件,还是多进程间共享内存,都可以看到mmap/munmap的身影。
今天在给几个库做映射的时候,用tnsping,有一个库老是有问题,在客户端配置 tnsping NFTTEST Used TNSNAMES adapter to resolve the alias Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = 172.19.198.51)(PORT = 1563))) (CONNECT_DATA = (SERVICE_NAME = NFTTEST
领取专属 10元无门槛券
手把手带您无忧上云