这篇文章介绍如何使用Michael Nielsen 用python写的卷积神经网络代码,以及比较卷积神经网络和普通神经网络预测的效果。
我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个。这里主要介绍Mini-batch gradient descent和stochastic gradient descent(SGD)以及对比下Batch gradient descent、mini-batch gradient descent和stochastic gradient descent的效果。
机器学习应用是一个高度依赖经验并伴随着大量迭代的过程——这一句话不得不同意,经验更重要,深有体会。你需要训练诸多模型才能找到合适的那一个。深度学习没有在大数据领域发挥最大的效果,我们可以利用一个巨大的数据集来训练神经网络,而在巨大的数据集基础上训练速度很慢,因此你会发现使用快速的优化算法、使用好用的优化算法能大大提高你和团队的效率
从【DL笔记1】到【DL笔记N】以及【DL碎片】系列,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现自己的小而有趣的想法......我相信,一路看下来,我们可以感受到深度学习的无穷的乐趣,并有兴趣和激情继续钻研学习。 正所谓 Learning by teaching,写下一篇篇笔记的同时,我也收获了更多深刻的体会,希望大家可以和我一同进步,共同享受AI无穷的乐趣。
吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
这几天看到以为同学面试京东,给她的感觉非常不错,如果加入面试官的团队,一定会超开心。
训练深度视频模型比训练其对应图像模型慢一个数量级。训练慢导致研究周期长,阻碍了视频理解研究的进展。按照训练图像模型的标准做法,视频模型训练使用了固定的mini-batch形状,即固定数量的片段,帧和空间大小。
随着神经网络的尺寸和训练数据的持续增长,人们对分布式计算的需求也逐渐增大。在深度学习中实现分布式并行的常用方式是使用数据并行方法,其中数据被分配进不同进程中,而模型在这些进程中重复。当每个模型的 mini-batch 大小保持不变,以增加计算/通信比时,整个系统上的 mini-batch 大小会随着进程数量成比例增长。
选项1是肯定的,一个mini-batch的数据小于总样本,所以仅就一次迭代而言,mini-batch是快于整批迭代的。
是在整个 mini-batch 上进行计算,但是在测试时,你不会使用一个 mini-batch 中的所有数据(因为测试时,我们仅仅需要少量数据来验证神经网络训练的正确性即可.)况且如果我们只使用一个数据,那一个样本的均值和方差没有意义,因此我们需要用其他的方式来得到 u 和
神经网络训练过程是对所有m个样本,称为batch,如果m很大,例如达到百万数量级,训练速度往往会很慢。
前面我们学过向量化可以较快的处理整个训练集的数据,如果样本非常的大,在进行下一次梯度下降之前,你必须完成前一次的梯度下降。如果我们能先处理一部分数据,算法速度会更快。
在过去两年中,深度学习的速度加速了 30 倍。但是人们还是对 “快速执行机器学习算法” 有着强烈的需求。
流式聚合(streaming aggregation)是我们编写实时业务逻辑时非常常见的场景,当然也比较容易出现各种各样的性能问题。Flink SQL使得用户可以通过简单的聚合函数和GROUP BY子句实现流式聚合,同时也内置了一些优化机制来解决部分case下可能遇到的瓶颈。本文对其中常用的Mini-Batch做个简要的介绍,顺便从源码看一看它的实现思路。
流式聚合(streaming aggregation)是我们编写实时业务逻辑时非常常见的场景,当然也比较容易出现各种各样的性能问题。Flink SQL使得用户可以通过简单的聚合函数和GROUP BY子句实现流式聚合,同时也内置了一些优化机制来解决部分case下可能遇到的瓶颈。本文对其中常用的Mini-Batch做个简要的介绍,顺便从源码看一看它的实现思路。
batch_size机器学习使用训练数据进行学习,针对训练数据计算损失函数的值,找出使该值尽可能小的参数。但当训练数据量非常大,这种情况下以全部数据为对象计算损失函数是不现实的。因此,我们从全部数据中选出一部分,作为全部数据的“近似”。神经网络的学习也是从训练数据中选出一批数据(称为 mini-batch,小批量),然后对每个mini-batch进行学习。比如,从60000个训练数据中随机选取100个数据,用这100个数据进行学习,这种学习方式成为 mini-batch 学习。用mini-batch的方法定
在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数ll,接下来便是通过优化算法对损失函数ll进行优化,以便寻找到最优的参数θ\theta 。在求解机器学习参数θ\theta 的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
深层神经网络参数调优(三)——mini-batch梯度下降与指数加权平均 (原创内容,转载请注明来源,谢谢) 一、mini-batch梯度下降 1、概述 之前提到的梯度下降,每优化一次的w和b,都要用到全部的样本集,把其称为批量梯度下降(batch),这里提出一个与其相对应的概念,叫做mini梯度下降。 mini-batch的目的,也是为了获取最优化代价函数的情况下的w和b,其主要改进的问题在于:当样本集数量太大,如果每次遍历整个样本集才完成一次的更新w和b,那运行时间太长。 2、主要做
上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接
本文介绍了深度学习的可解释性和可视化工具,并提供了几种实现方式。通过这些工具,我们可以更好地理解模型的工作原理,从而更好地进行优化和调试。
(1)加速收敛(2)控制过拟合,可以少用或不用Dropout和正则(3)降低网络对初始化权重不敏感(4)允许使用较大的学习率
Batch Normalization (BN) 是最早出现的,也通常是效果最好的归一化方式。feature map:
本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。
调好参数的 mini-batch 梯度下降,通常优于梯度下降或随机梯度下降(特别是当训练集很大时)
Large mini-batch 分布式深度学习是满足需求的关键技术。但是由于难以在不影响准确性的情况下在大型集群上实现高可扩展性,因此具有较大的挑战难度。
里面对 BGD,SGD,MBGD,Adagrad,Adadelta,RMSprop,Adam 进行了比较, 今天对其中的 mini-batch 梯度下降 作进一步详解。
InsCLR: Improving Instance Retrieval with Self-Supervision
我们都知道,在视频上训练深度网络 3D CNN 比训练 2D CNN 图像模型的计算量更大,可能要大一个数量级。长时间的训练会消耗大量的硬件和资源,在减缓视频理解研究领域发展的同时,也会阻碍该领域在真实场景的应用。
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我
论文: YOLOv4: Optimal Speed and Accuracy of Object Detection
上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接着,我们介绍了防止过拟合的两种方法:L2 regularization和Dropout。然后,介绍了如何进行规范化输入,以加快梯度下降速度和精度。然后,我们介绍了梯度消失和梯度爆炸的概念和危害,并提出了如何使用梯度初始化来降低这种风险。最后,我们介绍了梯度检查,来验证梯度下降算法是否正确。
实践证明,更大的模型在不少场景取得了更好的效果。但随着参数规模的扩大,AI加速卡存储(如GPU显存)容量问题和卡的协同计算问题成为了训练超大模型的瓶颈。流水线并行从模型切分和调度执行两个角度解决了这些问题。本文将从流水线并行介绍、主流实现方式以及一般调优技巧三方面从浅到深讲解流水线并行,希望能帮助您更好地理解和使用流水线并行功能。
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值。(本文会不断补充) ---- ---- 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η。下面讨论在训练时选取η的策略。 固定的学习速率。如果学习速率太小,则会使收敛过慢,如果学习速率太大,则会导致代价函数振荡,如下图所示。就下图来说,一个比较好的策略是先将学习速率设置为0.2
给定 loss 函数,可以根据传统的 hard example mining 方法来定义 loss 值较大的样本作为 hard examples,但多个 loss 值将被用于挖掘每一个样本的 hard examples.
随着用于深度学习的数据集和深度神经网络模型的规模增大,训练模型所需的时间也在增加具有数据并行性的大规模分布式深度学习可以有效缩短训练时间。
知乎专栏 - 张俊林 - 深度学习中的Normalization模型 - https://zhuanlan.zhihu.com/p/43200897
下面附上一张 pack_padded_sequence 原理图(其实只是将三维的输入去掉PAD的部分搞成了二维的。在RNN前向的时候,根据batch_sizes参数取对应的时间步计算。)
根据日本富士通实验室最新研究。他们应用了一种优化方法,在ABCI 集群上,实现了74.7秒的训练时间。训练吞吐量为173万图像/秒,top-1验证准确率为75.08%。
Batch Normalization(简称BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合。BN大法虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等动态网络无法有效应用BN等。针对BN的问题,最近两年又陆续有基于BN思想的很多改进Normalization模型被提出。BN是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN及一系列改进Normalization工作都是绕不开的重要环节。
[ 导读 ]不管是传统机器学习,还是当前火热的深度学习,Normalization技术都是能够提升算法性能的大杀器。本文以非常宏大和透彻的视角分析了深度学习中的多种Normalization模型,包括大家熟悉的Batch Normalization (BN)和可能不那么熟悉的Layer Normalization (LN)、Instance Normalization (IN) 及Group Normalization (GN)模型;用生动形象的例子阐述了这些Normalization模型之间的区别和联系;并在一个统一的数学框架下分析了它们的性质;最后从一个新的数学视角分析了BN算法为什么有效。
本文介绍了梯度下降算法的原理、优缺点以及应用。梯度下降算法是一种用于优化目标函数的迭代方法,通过计算目标函数的梯度来更新参数。该算法有批量梯度下降、随机梯度下降和小批量梯度下降三种形式。优点是计算简单、易于实现;缺点是可能会陷入局部最优解。在机器学习和深度学习领域,梯度下降算法被广泛应用于训练模型。
我们先从 Mini-Batch SGD 的优化过程讲起,因为这是下一步理解 Batch Normalization 中 Batch 所代表具体含义的知识基础。
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Acce
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Ac
mini-batch指的是一个batch的所有样本对应通道组合成一个minibatch,1个nchw的数据有c个mini-batch
深度学习难以在大数据领域发挥最大效果的一个原因是,在巨大的数据集基础上进行训练速度很慢。而优化算法能够帮助我们快速训练模型,提高计算效率。接下来我么就去看有哪些方法能够解决我们刚才遇到的问题或者类似的问题
2. Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations
领取专属 10元无门槛券
手把手带您无忧上云