对于一个实时数据产品人员、或者开发人员来说,产品上展示的实时数据,pv、uv、gmv等等,怎么知道这些数据是不是正确的呢?当其他的小组开发的产品的数据(或者其他的数据提供方)又是另外一个数字,那么究竟该如何判断自己的数据还是别人的数据是正确的呢?
对于一个实时数据产品人员、或者开发人员来说,产品上展示的实时数据,pv、uv、gmv等等,怎么知道这些数据是不是正确的呢?当其他的小组开发的产品的数据(或者其他的数据提供方)又是另外一个数字,那么究竟该如何判断自己的数据还是别人的数据是正确的呢?这就需要一套实时数据对数方案,本文主要从背景、实时数据计算方案、对数方案、总结四方面来介绍,说服老板或者让其他人相信自己的数据是准确的、无误的。
作者简介:诸葛子房,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上。
有赞数据报表中心为商家提供了丰富的数据指标,包括30+页面,100+数据报表以及400+不同类型的数据指标,它们帮助商家更合理、科学地运营店铺,同时也直接提供分析决策方法供商家使用。并且,每天在跑的底层任务和涉及的数据表已经达到千级别。面对如此庞大的数据体系,作为测试如何制定质量保障策略呢?这篇文章将从:1.有赞数据链路 、2.数据层测试、 3.应用层测试、 4.后续规划这四个方面展开。
在当前CDP的大部分的场景中,PART_COL_STATS和TAB_COL_STATS这两张Hive元数据表都会比较大。因为这两张表是分别存放分区表和非分区表的一些字段上的统计信息,而在CDP中Hive的CBO、Mapjoin和谓词下推等优化查询功能默认是开启的,而这些优化功能又需要基于这些统计信息来做优化,所以在一个已经稳定运行的生产环境中,对应的这两张表可能有非常庞大的数据量(上千万甚至于上亿)。
在前几章节中,我们已经学会了如果在一张表中读取数据,这是相对简单的,但是在真正的应用中经常需要从多个数据表中读取数据。
外连接分为左外连接、右外连接、和全外连接。左外连接是左边的表不加限制,里面的数据全部显示出来,而右边则是符合条件的才显示,不符合条件的不显示。
是的,这是MYSQL的exists关键词,今天我们就来说说这个exist,为了给大家更清楚的讲解,先给大家说下本文目录:
多表查询,也称为多表连接查询;作为关系型数据库最主要的查询方式,在日常工作中被广泛使用
在select语句中,如果from子句引用了多个表源或试图,则可以用join关键字连接
在MySQL中,查询操作通常会涉及到联结不同表格,而JOIN命令则在这一过程中扮演了关键角色。在JOIN操作中,我们通常会使用三种不同的方式,分别是内连接、左连接以及右连接。
mysql只支持一种join算法:Nested-Loop Join(嵌套循环连接),但Nested-Loop Join有三种变种:
表的生成参考《 3. SQL–数据库基础查询操作》。 前几节所总结的查询,都是基于单张表格进行的,如果单张表格的信息不足以达到查询的目的,就需要将他们组合到一起形成多张表格。
在前几章节中,我们已经学会了如何在一张表中读取数据,这是相对简单的,但是在真正的应用中经常需要从多个数据表中读取数据。
大中型项目,一旦数据量比较大,就要进行对数据的拆分了,一般有两种,垂直拆分与水平拆分。
上一讲:MySQL 是如何实现 ACID 中的 D 的? 我用了一个问题,给大家介绍了 MySQL 中的两个成员 binlog 和 redo log。然而,这只是 MySQL 家族里的两个小喽啰,Mysql 可以做到高性能高可靠,靠的绝对不只有他们俩。
对于 MySQL,要记住、或者要放在你随时可以找到的地方的两张图,一张是 MySQL 架构图,另一张则是 InnoDB 架构图:
在前端开发领域,表格一直都是一个高频使用的组件,尤其是在中后台和数据分析场景下。但当一屏展示数据超过1000条数据记录时,会出现浏览器卡顿等问题,严重影响客户体验。为解决这些性能问题,不少组件也提出了相关的解决方案,以ElementPlus为例,提出了虚拟化表格的概念来流畅的展示更多的数据,但该功能目前仍在测试中,投入生产环境可能会有一定的风险,因此本文不做更多的介绍,大家有兴趣可以参考虚拟化表格。
前段时间笔者开发某个项目遇到了MySQL性能问题,每张表的数据量都在五千万以上,个别表数据量甚至在一个亿以上,在开发的过程中遇到了非常多的数据库性能优化难点,笔者在开发过程中查询了很多资料,很多查询语句也在优化过程中取得了比较好的效果。笔者也将开发过程中遇到的sql优化问题总结为文章,以便日后回顾。这篇文章主要讲解mysql执行联结运算的原理。为了避免泄露公司业务及数据,在文章中涉及的sql语句都和公司业务无关。
最近,有一个业务需求,给我一份数据 A ,把它在数据库 B 中存在,而又比 A 多出的部分算出来。由于数据比较杂乱,我这里简化模型。
1.Broadcast Hash Join(小表广播,小表Join大表)(分布式改造)
本文来源:原创投稿 *爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。
Join是SQL语句中的常用操作,良好的表结构能够将数据分散在不同的表中,使其符合某种范式,减少表冗余、更新容错等。而建立表和表之间关系的最佳方式就是Join操作。
MySQL中的alter table操作对于大表来讲,是一个比较严重的问题,MySQL执行大部分alter table的操作步骤是:
根据网站实时登录会员数据以及会员基本信息来实时统计每个省份用户新增数据及每个省份实时用户的pv及uv指标,并在可视化大屏展示。
前导: Mysql数据是存储到硬盘上的,这里有两张用不同存储引擎存储的表有兴趣的朋友可以先打开自己的mysql硬盘库,查看一下存储的表数据结构 通过观察上图,我们发现 一 . Myisam
向刚才做的这两个操作(插入一个没有部门的员工和删除一个带有员工的部门),这种情况都是不应该发生的。
当前SparkSQL支持三种join算法:Shuffle Hash Join、Broadcast Hash Join以及Sort Merge Join。其中前两者归根到底都属于Hash Join,只不过载Hash Join之前需要先Shuffle还是先Broadcast。其实,Hash Join算法来自于传统数据库,而Shuffle和Broadcast是大数据在分布式情况下的概念,两者结合的产物。因此可以说,大数据的根就是传统数据库。Hash Join是内核。
1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率;
重新分析两张表数据量,a 表数据量750w+, b 表数据量350w+, 在未做任何优化情况下数据是需要经过shuffle, 将相同的key分布到相同的节点上, 首先考虑使用mapjoin 解决,使其不用执行shuffle操作。
优化思路:数据库中不存longtext字段,新增blob字段,将文本在后端压缩为bytep[]存到blob二进制字段中,查询时返回。理由:zip是现在成熟的压缩算法,基于LZ77算法和哈夫曼编码,可以把文本(String)较大程度地压缩为byte[]。注:不建议再把压缩后的byte[] BASE64为String,因为BASE64是一种编码方式。
此前,金融信息化建设主要依托原有集中型 IT 架构进行维护扩展,系统规模及复杂程度呈指数级增长,各类瓶颈逐渐暴露,日益增长的数字金融需求同旧式的系统架构缺陷之间的矛盾愈加凸显。
我知道,一说到数字经济,数字化转型,数字化人才,你第一感觉就是:跟我有半毛钱关系。诶,不要着急!
我们会遇到开发任务: 经理:小王,你来做一下把数据库里的数据导出到Excel中,一个表是一个sheet,不要一个表一个Excel. 小王:好的,经理.(内心一脸懵逼)
知道内连接,左外连接和右外连接后,全连接我想应该也知道了吧。就是多张表的所有数据,但是注意"它们的交集"不能重复出现。
人脸识别以前在小编的记忆中,都是电影的情节,[ 金库!!! 安全大门!!! 收藏地下库!!! ] 扫脸进库 Duang~
MYSQL 的hash join 是从8.018引入的, 众所周知MYSQL的JOIN 的方式一直是不大友好的,nested loop join 在针对数据表join方式中,速度是一个问题。优化的手段很多,驱动表的选择,先去除参与JOIN的数据的等等都是方法。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/53883505
表中只有一个字段时 count(*) 效率最高,count(列名) 当列名是主键时,它的效率高于 count(1),其他情况 count(1) 效率更高。
在表的连接查询方面有一种现象被称为:笛卡尔积现象。 笛卡尔积现象:当两张表进行连接查询的时候,没有任何条件进行限制,最终的查询结果条数是两张表记录条数的乘积。 怎么避免笛卡尔积现象?当然是加条件进行过滤。 思考:避免了笛卡尔积现象,会减少记录的匹配次数吗? 不会。只不过显示的是有效记录。
首先回答一下为什么要分库分表,答案很简单:数据库出现性能瓶颈。用大白话来说就是数据库快扛不住了。
MySQL 数据库现在主要用的引擎是 InnoDB ,InnoDB 没有类似于 MERGE 引擎这样的原生拆表方案,不过有原生分区表,以水平方式拆分记录集,对应用端透明。
领取专属 10元无门槛券
手把手带您无忧上云