在 mysql 中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。
之前一直使用mysql作为存储数据库,虽然中间偶尔使用sqlite作为本地数据库存储,hive作为简单查询工具,maxcompute作为大数据查询服务等等,但没有感觉多少差别。事实上,我们往往听说SQL-92标准之类的云云!
今天遇见了一个线上的MySQL问题,问题的内容是某个阿里云ECS频繁报警,报警的内容是:CPU使用率超过阈值。下面是具体的Grafana报警中负载、CPU和磁盘使用率的图像:
COUNT(1) 和 COUNT(*) 表示的是直接查询符合条件的数据库表的行数。而 COUNT(列名) 表示的是查询符合条件的列的值不为 NULL 的行数。
前提:所有实验操作是基于mysql5.6,其他版本可能有差异,届时以具体的情况为准。
一个字符类型的、一个int类型的,查询的时候到底会不会走索引,其实很多工作了几年的开发人员有时也会晕,下面就用具体事例来测试一下。
无论在工作还是面试中,关于SQL中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
盲注就是在sql注入过程中,sql语句执行的选择后,选择的数据不能回显到前端页面。此时,我们需要利用一些方法进行判断或者尝试,这个过程称之为盲注。
面试官:“小陈,说一下你常用的 SQL 优化方式吧。” 陈小哈:“那很多啊,比如不要用 SELECT *,查询效率低。巴拉巴拉...”
我们建索引的时候,有全文索引、主键索引、唯一性索引、普通索引等,前面两个好理解好区分,大家都知道啥时候用,后面两个该如何区分呢?唯一性索引和普通索引该如何选择呢?今天我们就来聊聊这个话题。
1.查版本号无论做什么都要确认版本号,不同的版本号下会有各种差异。>Select version(数据库
无论在工作还是面试中,关于 SQL 中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
作者:fanili,腾讯 WXG 后台开发工程师 知其然知其所以然!本文介绍索引的数据结构、查找算法、常见的索引概念和索引失效场景。 什么是索引? 在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。(百度百科) 索引的目的是提高查找效率,对数据表的值集合进行了排序,并按照一定数据结构进行了存储。 本文将从一个案
版权声明:本文为CSDN博主「_陈哈哈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_39390545/article/details/106766965
陈小哈:“SELECT * 它好像比写指定列名多一次全表查询吧,还多查了一些无用的字段。”
文章摘要:一个小小的MySQL数据库B-Tree索引可能会带来意想不到的性能优化提升……
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤。
前面几篇文章和小伙伴们聊的基本上都是从索引的角度去优化 MySQL 查询,然而,索引创建的好,并不意味着查询就一定快,影响查询效率的因素特别多,今天我们就来聊一聊这些可能影响到查询的因素。
作者简介 荣华,携程高级研发经理,专注于后端技术项目研发管理。 军威,携程软件技术专家,负责分布式缓存系统开发 & 存储架构迁移项目。 金永,携程资深软件工程师,专注于实时计算,数据分析工程。 俊强,携程高级后端开发工程师,拥有丰富SQLServer使用经验。 前言 携程酒店订单系统的存储设计从1999年收录第一单以来,已经完成了从单一SQLServer数据库到多IDC容灾、完成分库分表等多个阶段,在见证了大量业务奇迹的同时,也开始逐渐暴露出老骥伏枥的心有余而力不足之态。基于更高稳定性与高效成本控制而设计
在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。(百度百科)
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤,对这个过程不了解的同学可以先行阅读一下《MySQL复杂where条件分析》。
在选择数据库时,最大的决策之一是选择关系(SQL)或非关系(NoSQL)数据结构。虽然两者都是可行的选择,但在做出决定时必须牢记两者之间存在某些关键差异。
因为默认GROUP_CONCAT函数返回的结果大小被MySQL默认限制为1024(字节)的长度。
统计一个表的数据量是经常遇到的需求,但是不同的表设计及不同的写法,统计性能差别会有较大的差异,下面就简单通过实验进行测试(大家测试的时候注意缓存的情况,否则影响测试结果)。
在上一期《优化器成本记录表|全方位认识 mysql 系统库》中,我们详细介绍了mysql 系统库中的优化器成本记录表,本期我们将为大家带来系列第六篇《时区信息记录表|全方位认识 mysql 系统库》,下面请跟随我们一起开始 mysql 系统库的系统学习之旅吧!
在工作中遇到count(*)、count(1)、count(col) ,可能会让你分不清楚,都是计数,干嘛这么搞这么多东西。
id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
关于 MySQL 索引,对于研发同学,尤其是后端研发同学,一定不会陌生。我们工作中经常会用到 MySQL 数据库,就肯定会经常用到性能优化方面的设计和考量,常常用涉及到 MySQL 索引。但是关于 MySQL 索引,你真的用对了么?
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
大家好,我是架构精进之路,今天给大家带来一个主题为《MySQL索引,你真的会用吗?》,关于MySQL索引的应用分享。
当事务隔离级别为REA-UNCOMMITED和READ-COMMITED时如果binlog_format设置为statement,执行DML操作会报错
示例:在一个表中,如果有名称、地址列,并且需要在其中一个条目的新列中输入“年龄”,则不会使用它,因为该列未在架构中定义。
使⽤ EXPLAIN 判断 SQL 语句是否合理使用索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。
本文我们来谈谈项目中常用的MySQL优化方法,巧用这19条技巧,至少提高3倍效率,具体如下:
《MySQL性能调优,这个工具最有用》留了一个尾巴: select id,name where name='shenjian' select id,name,sex where name='shenjian' 多查询了一个属性,为何检索过程完全不同? 什么是回表查询? 什么是索引覆盖? 如何实现索引覆盖? 哪些场景,可以利用索引覆盖来优化SQL? 这些,这是今天要分享的内容。 画外音:本文试验基于MySQL5.6-InnoDB。 一、什么是回表查询? 这先要从InnoDB的索引实现说起,InnoDB有两大类
MySQL 中字符串既可以用单引号也可以用双引号,而 Oracle 中只能用单引号。
Infobright是一款基于独特的专利知识网格技术的列式数据库。Infobright简单易用,快速安装部署,使用中无需复杂操作,能大幅度减少管理工作;在应对50TB甚至更多数据量进行多并发复杂查询时,更能够显示出令人惊叹的速度。相比于MySQL,其查询速度提升了数倍甚至数十倍,在同类产品中单机性能处于领先地位。为企业剧增的数据规模、增长的客户需求以及较高的用户期望提供了全面的解决方案。
现如今,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显,所以要重视数据库的性能优化。
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用between就不要用in了;再或者使用连接来替换。
网上其实已经有非常多的文章都很详细的介绍了 explain 的使用,这篇文章将实例和原理结合起来,尽量让你有更好的理解,相信我,认真看完你应该会有特别的收获。
综合来看,其实 MySQL 更适合 OLTP 的场景。现在云服务商提供的数据库基本都实现了主从延迟很低,读取性能可以加从库解决。例如 Aurora,一个写入实例最多可以加 12 个读取实例,延迟在我们业务最高峰的时候,也只有 300 ms,平常在 10ms 左右。
over_clause 表示 COUNT 以窗口函数工作,MySQL 8.0 开始支持,这个不在本文展开,感兴趣的同学请参考 Section 14.20.2, “Window Function Concepts and Syntax”。
MySQL8.0.18在上个月已经正式发布了,令人兴奋的是带来了Hash Join,今天体验一下Hash Join是否能带来性能上的提升。
领取专属 10元无门槛券
手把手带您无忧上云