哈喽,我是狗哥。小伙伴都知道我最近换工作了,薪资、工作内容什么的都是我比较满意的。五月底也面试了有 6、7 家公司,应该拿了有 5 个 offer。这段时间也被问了很多面试题,我打算写一个专题分享出来,希望对你们有所帮助~
相信每个人在写代码时都有遇到过要获取MYSQL表里数据行数的情况,多数人获取数据表行数时都用COUNT(*),但同时也流传了不少其他方式,比如说COUNT(1)、COUNT(主键)、COUNT(字段)。到底哪种方式MYSQL执行起来更快也是众说纷纭,其实之前我也不知道到底哪个执行起来快,到底谁说的对(笑哭)。好在最近在认真学习极客时间的MySQL专栏,其中专门有一节是对这个问题的讨论,看完后也是解除了长久以来的疑惑。
我是林晓斌,今天作为【迪B课堂】的客串嘉宾来跟大家分享:当索引存储顺序和order by不一致,该怎么办?
count(*) 和count(1) 都是统计行数,而count(col) 是统计col列非null的行数
left join在我们使用mysql查询的过程中可谓非常常见,比如博客里一篇文章有多少条评论、商城里一个货物有多少评论、一条评论有多少个赞等等。但是由于对join、on、where等关键字的不熟悉,有时候会导致查询结果与预期不符,所以今天我就来总结一下,一起避坑。
统计数据的需求在我们日常开发中是非常容易遇到了,MySQL也支持多种的计算的函数,
面试真题,用通俗的例子解释清楚 MySQL 为什么有了表锁和行锁之后,还要引入意向锁
这是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。这里,用一个算 count(*) 的例子来为你解释一下。
原文链接:https://segmentfault.com/a/1190000020458807
在开发系统的时候,你可能经常需要计算一个表的行数,比如一个交易系统的所有变更记录总数。这时候你可能会想,一条 select count(*) from t 语句不就解决了吗?
使用 select count() from t。计算一个表的行数,比如一个交易系统的所有变更记录总数。随着系统中记录数越来越多,这条语句执行得也会越来越慢。然后你可能就想了,MySQL 怎么这么笨啊,记个总数,每次要查的时候直接读出来,不就好了吗。那么今天,我们就来聊聊 count() 语句到底是怎样实现的,以及 MySQL 为什么会这么实现。然后,我会再和你说说,如果应用中有这种频繁变更并需要统计表行数的需求,业务设计上可以怎么做。
点击上方蓝字每天学习数据库 我是林晓斌,今天作为【迪B课堂】的客串嘉宾来跟大家分享:当索引存储顺序和order by不一致,该怎么办? 林晓斌 林晓斌,网名丁奇,腾讯云数据库负责人,数据库领域资深技术专家。作为活跃的MySQL社区贡献者,丁奇专注于数据存储系统、MySQL源码研究和改进、MySQL性能优化和功能改进,在业务场景分析、系统瓶颈分析、性能优化方面拥有丰富的经验。其创作的《MySQL实战45讲》专栏受众已逾2万人。 根据指定的字段排序来显示结果,是我们写应用时最常见的需求之一了,比如一个交
印象中网上有些“XX 面试官”系列的网文也有过类似问题的讨论,那 MySQL 统计数据总数 count(*) 、count(1)和count(列名) 哪个性能更优呢?今天我们就来聊一聊这个问题。
统计一张表的总数量,是我们开发中常有的业务需求,通常情况下,我们都是使用 select count(*) from t SQL 语句来完成。随着业务数据的增加,你会发现这条语句执行的速度越来越慢,为什么它会变慢呢?
MySQL count() 函数我们并不陌生,用来统计每张表的行数。但如果你的表越来越大,且是 InnoDB 引擎的话,会发现计算的速度会越来越慢。在这篇文章里,会先介绍 count() 实现的原理及原因,然后是 count 不同用法的性能分析,最后给出需要频繁改变并需要统计表行数的解决方案。
大多数人,都会开两个窗口,分别起两个事务,然后 update 同一条记录,在发起第二次 update 请求时,block,这样就说明这行记录被锁住了:
今天有人跟我讲 MySQL 中 count(1) 比 count(*) 快,这能忍?必须得和他掰扯掰扯。
上述的count(*)指的是在查询的时候不加where条件,不加where条件的count(*)在不同的数据库引擎下有不同的实现:
上次打了慢sql日志,发现有很多包含count逻辑的sql,周末抽空来梳理下mysql里的count。
索引是加速数据库查询的关键。在设计表结构时,应该根据查询的需求添加合适的索引。常用的索引包括主键、唯一索引、普通索引、联合索引、前缀索引(vachar、text这种长的数据并且只需要前几个区分度就很高)等。
2、优化器完成sql优化后,向执行器提供执行计划,执行器开始执行执行计划来操作数据。
关于MySQL 的 join,大家一定了解过很多它的“轶事趣闻”,比如两表 join 要小表驱动大表,阿里开发者规范禁止三张表以上的 join 操作,MySQL 的 join 功能弱爆了等等。这些规范或者言论亦真亦假,时对时错,需要大家自己对 join 有深入的了解后才能清楚地理解。
日常开发中,获取数据的总数是很常见的业务场景,但是我们发现随着数据的增长count(*)越来越慢,这个是为什么呢,
其实对于上面的观点一定程度上是正确的,但不是完全正确。但之所以流传这么广,主要还是没有搞清楚实际状态,而根据实际使用中总结出来的一些模糊规律。只有了解的MySQL的Join实际执行方式,就会知道上面2种观点是一种模糊的规律,这种规律并不能指导我们实际开发。下面就说说MySQL的实际join执行方式。
在看此篇前,建议先阅读MySQL索引,对索引有个基本了解:MySQL数据库进阶-索引-CSDN博客
expain出来的信息有10列,分别是id、select_type、table、type、possible_keys、key、key_len、ref、rows、Extra,下面对这些字段出现的可能进行解释:
这篇文章主要讲 explain 如何使用,还有 explain 各种参数概念,之后会讲优化
大家有没有遇到过慢查询的情况,执行一条SQL需要几秒,甚至十几、几十秒的时间,这时候DBA就会建议你去把查询的 SQL 优化一下,怎么优化?你能想到的就是加索引吧?
上图是使用Explain分析的一条sql语句,下面我们来看一下各个字段的具体含义是什么
全局锁就是对整个数据库实例加锁。MySQL提供了一个加全局读锁的方法,命令是Flush tables with read lock。当需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句
大家好,又见面了,我是全栈君。 不同的count用法 在前面文章的评论区,有同学留言问到:在select count(?) from t这样的查询语句里面,count(*)、count(主键id)、c
游标(Cursor)是处理数据的一种方法,为了查看或者处理结果集中的数据,游标提供了在结果集中一次一行遍历数据的能力。 游标也是一种面向过程的sql编程方法,所以一般在存储过程、函数、触发器、循环处理中使用。
SIMPLE(simple):简单SELECT(不使用UNION或子查询)。 PRIMARY(primary):子查询中最外层查询,查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY。 UNION(union):UNION中的第二个或后面的SELECT语句。 DEPENDENT UNION(dependent union):UNION中的第二个或后面的SELECT语句,取决于外面的查询。 UNION RESULT(union result):UNION的结果,union语句中第二个select开始后面所有select。 SUBQUERY(subquery):子查询中的第一个SELECT,结果不依赖于外部查询。 DEPENDENT SUBQUERY(dependent subquery):子查询中的第一个SELECT,依赖于外部查询。 DERIVED(derived):派生表的SELECT (FROM子句的子查询)。 UNCACHEABLE SUBQUERY(uncacheable subquery):(一个子查询的结果不能被缓存,必须重新评估外链接的第一行)
个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~
可能你会一脸懵逼,But 实际上,其实考的就是 join 这个知识点,不难,看完这篇文章你就会啦~
在MySQL中,join语句想必大家都不陌生,今天我们围绕join语句展开,说一些可能平时不关注的知识点。
在select count(?) from t这样的查询语句里面,count(*)、count(主键id)、count(字段)和count(1)等不同用法的性能,有哪些差别。 需要注意的是,下面的讨论
此时我们需要使用游标,通过游标的方式来遍历select查询的结果集,然后对每行数据进行处理。
共享锁,又被称为读锁,是由读取操作所创建的一种锁。在此期间,其他用户可以同时读取数据,但在数据上未释放所有共享锁之前,任何事务均无法对其进行修改(即获取数据的排他锁)。
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
介绍了为什么MySQL使用B+TREE 而 MongoDB使用B-TREE
在一次对数据进行统计的时候,需要对两张表进行关联,类似于这样的语句a left join b on a.id = b.id where b.name = xx。发现最终的结果和预期不一致,汇总之后的数据变少了。
大家好,又见面了,我是全栈君。 在select count(?) from t这样的查询语句里面,count(*)、count(主键id)、count(字段)和count(1)等不同用法的性能,有哪些
上一篇介绍了4种进行MySQL性能优化排查的小技巧,本篇就通过从增、删、改、查的语法中如何进行优化,帮助大家更好理解MySQL语法,进行性能优化。
在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都可以通过explain命令来查看。所以我们深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。(QEP:sql生成一个执行计划query Execution plan)
网上有很多关系型数据库各种count操作孰优孰劣的文章,如下是曾经写过的有关Oracle和PG中count的文章,
领取专属 10元无门槛券
手把手带您无忧上云