mysql表分区--RANGE分区,属于横向分区。举例说,假如有100条数据,分成十份,前10条数据放到第一个分区,第二个10条数据放到第二个分区,依此类推。横向分区,并不会改变表的结构。
1、创建表分区 CREATE TABLE tbhash ( id INT NOT NULL, store_id INT ) PARTITION BY HASH(store_id) PARTITIONS 4; 2、查看表分区情况 SELECT PARTITION_NAME,PARTITION_METHOD,PARTITION_EXPRESSION,PARTITION_DESCRIPTION,TABLE_ROWS,SUBPARTITION_NAME,SUBPARTITION_METHOD,SUBPARTI
删除表分区:alter table tableName drop partition (pdt='表分区');
结果为:这是因为在CH中,和我们hive表不一样,hive表一个分区只会有一条记录,但CH不是,每个分区分为了不同的marks
Linux,Docker,MySQLCommunity8.0.31,InnoDB。
此表分区是两个案例,根据某个字段的值的大小范围进行分区或者根据时间范围进行分区
列表分区能把几种不同的数据整合在一个分区里,列表分区明确指定了根据某字段的某个具体值进行分区,而不是像范围分区那样根据字段的值范围来划分的。
达梦数据库分区表主要包括范围分区、哈希分区和列表分区三种方式, 企业可以使用合适的分区方法,如日期(范围)、区域(列表),对大量数据进行分区。由于达梦数据库划分的分区是相互独立且可以存储于不同的存储介质上的,完全可满足企业高可用性、 均衡IO、降低维护成本、提高查询性能的要求。今天我们主要讨论水平分区
Q 题目 MySQL支持哪几类分区表? A 答案 表分区是指根据一定规则,将数据库中的一张表分解成多个更小的,容易管理的部分。从逻辑上看,只有一张表,但是底层却是由多个物理分区组成,每个分区都是一个独立的对象。分区有利于管理大表,体现了“分而治之”的理念。一个表最多支持1024个分区。 在MySQL 5.6.1之前可以通过命令“show variables like '%have_partitioning%'”来查看MySQL是否支持分区。若have_partintioning的值为YES,则表示支持分
第一层是 Partition,即分区。用户可以指定某一维度列作为分区列,并指定每个分区的取值范围,分区支持 Range 和 List 的划分方式。
分页查询是MySQL特有的,一般其他数据库是没有的。分页查询可以从表里取一个范围的行,例如0到50行的的数据,30到100行的数据。
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快。这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈。
简单来说,微服务架构就是把传统的一个单体应用以一套"小服务"的方式进行开发,这些"小服务"可以运行在不同机器上,它们在自己的进程中运行,"小服务"之间可以通过像是 HTTP API 这样的轻量级的机制进行通信,这些"小服务"紧紧围绕项目的业务需求开发,同时,它们是以业务边界进行划分成独立的微服务。这些微服务看似独立又像是一个整体,构成了一个业务集群。
oracle官方发布的基准测试声明:In benchmark tests using SysBench Read-only Point-Selects, at 1,024connections, MySQL 5.7 delivered 1,600,000 queries per second (QPS)-- 3x faster than MySQL 5.6.
1. 什么是表分区 2. 分区的两种方式 2.1 水平切分 2.2 垂直切分 3. 为什么需要表分区 4. 分区实践 4.1 RANGE 分区 4.2 LIST 分区 4.3 HASH 分区 4.4 KEY 分区 4.5 COLUMNS 分区 5. 常见分区命令 6. 小结 松哥之前写过文章跟大家介绍过用 MyCat 实现 MySQL 的分库分表,不知道有没有小伙伴研究过,MySQL 其实也自带了分区功能,我们可以创建一个带有分区的表,而且不需要借助任何外部工具,今天我们就一起来看看。 1. 什么是表分区
线上有个MySQL 5.7版本的实例,从服务器延迟了3万多秒,而且延迟看起来好像还在加剧。
文字内容来自于 postgresqlopen 2019 Mistaken And Ignored Parameters While Optimizing A PostgreSQL Database 的部分内容,分2期来完成.
在 MySQL 中, InnoDB存储引擎长期以来一直支持表空间的概念。在 MySQL 8.0 中,同一个分区表的所有分区必须使用相同的存储引擎。但是,也可以为同一 MySQL 服务器甚至同一数据库中的不同分区表使用不同的存储引擎。
建立表s1,id字段为int类型,设置为自增主键 create table s1( id int AUTO_INCREMENT PRIMARY KEY, name char(20), age int );
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison
通俗地讲表分区是将一大表,根据条件分割成若干个小表。mysql5.1开始支持数据表分区了。 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分区。当然也可根据其他的条件分区。
PostgreSQL支持继承,版本10之前的分区表都是通过继承特性来实现,每个分区实际上都是一个独立的表。数据更新可通过触发器trigger或者规则rule来实现。
TDSQL集群支持创建集中式实例和分布式实例。在使用分布式实例的时候,可以创建以下几种类型的表:
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
上一篇主要讲到了分区分库分表的概念,其实在不影响性能的情况下,我们完全可以使用单分区单库单表。但是业务量大的情况下,受到性能限制我们不得不选择使用分区分库分表。本篇是上一篇的拓展,本篇主要讲讲十几种我们如何使用分区分库分表。如果还未看过上一篇文章建议先阅读概念篇:Mysql分库分表(1) --- 概念篇
通过这个 Node.js 和 MySQL 示例项目,我们将看看如何有效地处理 数十亿行 占用 数百GB 存储空间的数据。
Cannot delete or update a parent row: aforeign key constraint fails
根据用户定义的表现式回归值进行选择的分区,该表现式的使用将插入表中的这些行列值进行计算。
MySQL近两年一直稳居第二,随时有可能超过Oracle计晋升为第一名,因为MySQL的性能一直在被优化,同时安全机制也是逐渐成熟,更重要的是开源免费的。
对于分区表的检索无非有两种,一种是带分区键,另一种则不带分区键。一般来讲检索条件带分区键则执行速度快,不带分区键则执行速度变慢。这种结论适应于大多数场景,但不能以偏概全,要针对不同的分区表定义来写最合适的 SQL 语句。用分区表的目的是为了减少 SQL 语句检索时的记录数,如果没有达到预期效果,则分区表只能带来副作用。接下来我列举几个经典的 SQL 语句:
在使用hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具。
日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。
对于分区表的检索无非有两种,一种是带分区键,另一种则不带分区键。一般来讲检索条件带分区键则执行速度快,不带分区键则执行速度变慢。这种结论适应于大多数场景,但不能以偏概全,要针对不同的分区表定义来写最合适的SQL语句。用分区表的目的是为了减少SQL语句检索时的记录数,如果没有达到预期效果,则分区表只能带来副作用。
在我们日常处理海量数据的过程中,如何有效管理和优化数据库一直是一个既重要又具有挑战性的问题。
又是新的一年奋斗路的开启,相信有不少人农历新年之后,肯定会有所变动(跳槽加薪少不了)。所以,我把往期推送过的MySQL技术文章做了一个相关的整理,基础不好的可以从最基础的学习一遍,提高的也可以从中再提取深入一下。
快两年没写过业务代码了…… 今天帮一个研发团队优化了一下数据库表的查询性能。使用的是表分区。 简单记录了一下步骤,方便直接用:
Greenplum是一个分布式数据库系统,因此其所有的业务数据都是物理存放在集群的所有Segment实例数据库上;在Greenplum数据库中所有表都是分布式的,所以每一张表都会被切片,每个Segment实例数据库都会存放相应的数据片段。在下图中sale、customer、vendor、product四张表的数据都会切片存放在所有的Segment上,所有Segment实例同时工作,由于每个Segment只需要计算一部分数据,所以计算效率会大大提升。
DDL:Data Definition Language,数据库定义语言。在ClickHouse中,DDL语言中修改表结构仅支持Merge表引擎、Distributed表引擎及MergeTree家族的表引擎,SQL 中的库、表、字段严格区分大小写。
分区就是将表的数据按照特定规则存放在不同的区域,也就是将表的数据文件分割成多个小块,在查询数据的时候,只要知道数据数据存储在哪些区域,然后直接在对应的区域进行查询,不需要对表数据进行全部的查询,提高查询的性能。同时,如果表数据特别大,一个磁盘磁盘放不下时,我们也可以将数据分配到不同的磁盘去,解决存储瓶颈的问题,利用多个磁盘,也能够提高磁盘的IO效率,提高数据库的性能。常见的分区类型有:Range分区、List分区、Hash分区、Key分区:
1、list分区的每个分区必须明确定义,基于枚举出的值列表分区,通过使用PARTITION BY LIST(expr)来实现。
局部索引等价于我们通常说的本地索引,与主表的数据结构保持一对一的关系。局部索引没有单独分区的概念,一般来讲,主表的分区方式决定局部索引的分区方式,也就是说假设主表有10个分区,那么对于每个分区来讲,都有一个对应的局部索引。
分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中。分区完全对应用透明。Oracle的分区表可以包括多个分区,每个分区都是一个独立的段(SEGMENT),可以存放到不同的表空间中。查询时可以通过查询表来访问各个分区中的数据,也可以通过在查询时直接指定分区的方法来进行查询。
接上篇,上篇主要是从字段类型,索引,SQL语句,参数配置,缓存等介绍了关于MySQL的优化,下面从表的设计,分库,分片,中间件,NoSQL等提供更多关于MySQL的优化。
领取专属 10元无门槛券
手把手带您无忧上云