线上有个定时任务,这个任务需要查询一个表几天范围内的一些数据做一些处理,每隔十分钟执行一次,直至成功。
前面我写了很多Mysql相关的知识点,到这一篇稍微可以串一下了,从SQL执行流程、MVCC到锁,很多时候可能觉得对于间隙锁和Next-Key Lock好像已经理解了,但是好像又觉得理解差那么一点意思,这篇文章从头来梳理一下概念,明确一下这些知识。
我们的表经常使用的MyISAM、InnoDB存储引擎都是将数据和索引都存储到磁盘上的,当查询表中的记录时,需要先把数据或者索引加载到内存中,然后再进行操作。这个从磁盘到内存的加载过程损耗的时间称为I/O成本。
在业务离线数据分析场景下,往往需要将Mysql中的数据先导出到分布式存储中,如Hive、Iceburg。这个功能实现的方式有很多,但每种方式都会遇到一些问题(包括阿里开源的DataX)。本文就介绍下这个功能的优化之路,并最终给出一个笔者实现的终极方案。
去重: 在需要去重的字段前加上 distinct 例如:test表中有多个相同数据字段名为:tt
你想知道用户在你的 app 上的访问时长情况。 因此决定统计访问时长区间分别为 "[0-5>", "[5-10>", "[10-15>" 和 "15 or more" (单位:分钟)的会话数量,并以此绘制柱状图。
上篇文章回忆了innodDB的独立表空间和系统表空间的结构,因为需要梳理的知识点太多,所以额外用一篇。
注意关键字where,where后面跟上一个或者多个条件,条件是对前面数据的过滤,只有满足where后面条件的数据才会被返回。
首先我们要了解mysql查询优化器的执行效率,大约有10个,重点几个主要就是const,ref,range ,index,all。Const效率是最块的,成本可以忽略不计,主要通过主键或者唯一值查询的sql。还有比const更快的system,这种时候必须是mysql优化器内部精确计算查询成本,所以system不适用于innoDB,只适用于myISAM。Ref代表用的是索引b+tree查询的时候,比如用连接查询的时候,连接查询的条件是索引唯一值,这时候还分为eq-ref,er-ef是当被驱动表查询的是主键或者唯一二级索引的时候,这时候就是显示eq-ref。当连接表的条件是普通索引查询的时候,这时候显示就是ref,range顾名思义就是索引区间查询的时候,index代表查询覆盖索引的时候,all就是放弃索引全盘扫描了。
在之前的一次开发需求中使用了 for update 实现悲观锁,最后导致出现了很多的 MySQL 死锁报警,现记录下死锁产生的原因。
电商中:我们想查看某个用户所有的订单,或者想查看某个用户在某个时间段内所有的订单,此时我们需要对订单表数据进行筛选,按照用户、时间进行过滤,得到我们期望的结果。
在二级索引idx_key1中,key1列是有序的,查找按key1列排序的第1条记录,MySQL只需要从idx_key1中获取到第一条二级索引记录,然后直接回表取得完整的记录即可,这个很容易理解。
该系统由《Kafka并不难学!入门、进阶、商业实战》的作者 smartloli 开发维护,很牛掰的一位大佬。参考官网:Kafka Eagle
小麦同学是个吃货+技术宅,平日里就喜欢拿着手机地图点点按按来查询一些好玩的东西。某一天到北海公园游玩,肚肚饿了,于是乎打开手机地图,搜索北海公园附近的餐馆,并选了其中一家用餐。
Python是一种非常流行的编程语言,因为它易于学习、使用,并且具有广泛的应用领域。在数据库编程方面,Python可以很容易地与各种数据库进行交互,其中包括MySQL数据库。
计算中位数可能是小学的内容,然而在数据库查询中实现却并不是一件容易的事。我们今天就来看看都有哪些方法可以实现。
当你执行一次MySQL查询时,有没有仔细想过,在查询结果返回之前,经过了哪些步骤呢?这些步骤有可能消耗了超出想象的时间和资源。因此,在对MySQL的查询进行优化之前,应该了解一下MySQL查询的生命周期。
Redis和MySQL都是非常流行的开源数据库,各自有其独特的用途和优点。Redis是一个基于内存的键值存储系统,适用于缓存和高速读取操作。而MySQL是一种关系型数据库管理系统,适用于数据存储和复杂查询操作。在某些情况下,将两个数据库集成在一起可以实现更强大的功能。
在数据库中,索引可以理解为是一种单独的,物理的对数据库表中的一列或者多列的值进行排序的一种存储结构。它的作用是能让我们快速检索到想要的数据,好比字典的目录,通过目录的页码能快速找到我们想查找的内容。
$map['id'] = array(array('gt',3),array('lt',10), 'or') ;得到的查询条件是: ( id > 3) OR ( id < 10)
一、简介 数据库服务器需要CPU、内存、 磁盘和网络才能运行,了解这些资源对于DBA来说非常重要,因为任何的超载行为都可能成为限制因素,导致数据库服务器性能不佳。DBA的主要任务就是调整系统和数据库的配置,避免可用资源的过渡利用和利用不足。 首先,性能优化是一个持续的过程,安装MySQL通常是调整操作系统和数据库配置的第一步。而数据库是一个动态系统,这是一个永无止境的故事。你的MySQL数据库起初可能是CPU绑定的,因为你有足够的内存和很少的数据。随着时间地推移,它可能会改变,磁盘访问可能会变得更加频繁。正
但是,MySQL实际执行查询的顺序与书写顺序不同。MySQL优化器会根据内部算法和数据统计信息来决定最佳的执行顺序。以下是MySQL查询语句各个子句的实际执行顺序:
每个女孩都是天使,每个女孩都美丽芬芳。在这个特别的日子里,温馨的女人节骄傲的向我们走来,祝女神节日快乐!
缓存 show variables可以查看我们mysql的许多配置,我们查一些需要的参数可以使用类似于模糊匹配的方式如下:
MySQL不仅是一个强大的关系数据库管理系统,而且提供了一系列工具和接口,使开发人员能够轻松地在各种应用程序中使用MySQL。
锁是MySQL在服务器层和存储引擎层的并发控制,锁可以保证数据并发访问的一致性、有效性;
在Python中,可以使用MySQL官方提供的Python库mysql-connector-python来连接和操作MySQL数据库。连接MySQL数据库后,我们可以使用SQL语句执行查询并获取查询结果。在本文中,我们将详细介绍如何处理MySQL查询结果。
MySQL官方对索引的定义为:索引(Index)是帮助MySQL 高效 获取数据的数据结构,而MYSQL使用的数据结构是:B+树
俗话说工欲善其事,必先利其器,定期对你的MYSQL数据库进行一个体检,是保证数据库安全运行的重要手段。
对于正在运行的mysql,性能如何,参数设置的是否合理,账号设置的是否存在安全隐患,你是否了然于胸呢?
你对于正在运行的mysql 性能如何?参数设置的是否合理?账号设置的是否存在安全隐患?是否了然于胸?
需要注意的是,查询的执行顺序可能会因查询的复杂性、索引的存在与否、表的大小以及其他因素而有所不同。MySQL的查询优化器会尽力选择最佳的执行计划,以提高查询性能。同时,可以使用EXPLAIN语句来查看MySQL执行查询时选择的执行计划,以帮助调优查询性能。
对于正在运行的mysql 性能如何?参数设置的是否合理?账号设置的是否存在安全隐患?
这篇文章主要讲 explain 如何使用,还有 explain 各种参数概念,之后会讲优化
导语:SuperSQL是腾讯数据平台部自研的跨数据源、跨数据中心、跨执行引擎的统一大数据SQL分析平台/中间件,支持对接适配多类外部开源SQL执行引擎,如Spark、Hive等。 背景 SuperSQL是一款自研的跨数据源、跨数据中心、跨执行引擎的高性能大数据SQL中间件,满足对位于不同数据中心的不同类型数据源的数据联合分析/即时查询的需求。SuperSQL的目标是成为公司内部统一的SQL分析中间件,实现以下三点的价值: 解决业务数据孤岛,最大化数据的使用价值 执行引擎最优选择,提升业务使用数据效率 优化
导语:SuperSQL是腾讯数据平台部自研的跨数据源、跨数据中心、跨执行引擎的统一大数据SQL分析平台/中间件,支持对接适配多类外部开源SQL执行引擎,如Spark、Hive等。 背景 SuperSQL是一款自研的跨数据源、跨数据中心、跨执行引擎的高性能大数据SQL中间件,满足对位于不同数据中心的不同类型数据源的数据联合分析/即时查询的需求。SuperSQL的目标是成为公司内部统一的SQL分析中间件,实现以下三点的价值: 解决业务数据孤岛,最大化数据的使用价值 执行引擎最优选择,提升业务使用数据效率
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
这里的查询条件包括查询本身、现在查询的数据库、客户协议版本号等可能影响结果的信息。因此,任何两个查询在任何字符上都会导致缓存。
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
视图在数据库中是非常普及的功能。但是长期以来,大多数互联网公司的《MySQL开发规范》中都有一条规范:在MySQL中禁止(或建议不要)使用视图。究其原因,主要是由于在MySQL中视图的查询性能不好,同时带来了管理维护上的高成本。 不过随着MySQL 8.0中派生条件下推特性的引入,尤其是最近GA的MySQL 8.0.29版本中对于包含union子句的派生条件下推优化,MySQL中视图查询的性能得到了质的提升。 《MySQL开发规范》已经过时了,DBA该考虑考虑将禁止使用视图的规定重新修订一下了。
当前有很多工具辅助大数据分析,但最受欢迎的就是Python。Python简单易用,语言有着直观的语法并且提供强大的科学计算和集群学习库。借着最近人工智能,深度学习的兴起,Python成为时下最火的语言,已经超越了Java和C,并且纳入了国家计算机等级考试。本篇文章主要讲述如何在CDH集群基于Anaconda部署Python3的运行环境,并使用示例说明使用pyspark运行Python作业。
MySQL查询缓存,query cache,是MySQL希望能提升查询性能的一个特性,它保存了客户端查询返回的完整结果,当新的客户端查询命中该缓存,MySQL会立即返回结果。
在MySQL中,执行计划是优化器根据查询语句生成的一种重要的数据结构,它描述了如何通过组合底层操作实现查询的逻辑。当我们编写一条SQL语句时,MySQL会自动对其进行优化,并生成最优的执行计划以实现更快的查询速度。
MYSQL的查询缓存本质上是缓存SQL的hash值和该SQL的查询结果,如果运行相同的SQL,服务器将直接从缓存中删除结果,不再分析、优化、最低成本的执行计划等一系列操作。
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。 如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
昨天12月2日,MySQL团队放了一个大招——MySQL Database Service with Analytics Engine。这是个什么东西?先看看官网的宣传图片。
领取专属 10元无门槛券
手把手带您无忧上云