在数据库中,为了提高查询效率和数据的持久化存储,在设计索引时通常会采用B树或B+树。本文将对B树和B+树进行详细介绍,并解释为什么MySQL选择B+树作为索引结构。
数据库相关 mysql索引的数据结构,加索引的原则 InnoDB和myiasm的区别,以及常见的mysql优化方案 sql查询优化 说说Mysql的sql优化 mysql的索引,b+树索引是否支持范围查询,联合索引的失效情况 开发中用了那些数据库?回答mysql,储存引擎有哪些?然后问了我悲观锁和乐观锁问题使用场景、分布式集群实现的原理。 数据库索引原理 mysql索引 B+树原理 mysql索引是怎么实现的?b+树有哪些特点?真实的数据存在哪里?哪些情况下建索引?解释下最左匹配原则?现在一个表有三列a
【mysql优化专题】:本专题全文围绕mysql优化进行全方位讲解,本篇为优化入门篇,让大家知道为什么要优化,究竟在优化什么。喜欢的朋友可以关注收藏。 优化,一直是面试最常问的一个问题。因为从优化的角
B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树。它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。
介绍了为什么MySQL使用B+TREE 而 MongoDB使用B-TREE
同学B:因为索引其实就是一种优化查询的数据结构,比如Mysql中的索引是用B+树实现的,而B+树就是一种数据结构,可以优化查询速度,可以利用索引快速查找数据,所以能优化查询。
好久没写文章了,今天回来重操旧业。 今天讲的这个主题,是《面试官:谈谈你对mysql索引的认识》,里头提到的一个坑。
相信每一个后台开发工程师在面试过程中,都曾经被问到过“MySQL的默认存储引擎是什么?MySQL索引是什么数据结构?”这样的问题。相信准备充分(熟读八股文)的大家都能很容易的回答出“MySQL的默认存储引擎是InnoDB,MySQL索引使用的是B+树。”这样的答案。但是为什么当初写MySQL的程序员大叔要这样子来设计呢?
要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。
索引的本质其实就是各种各样的数据结构,在增删改查的各种操作有不通的时间复杂度和空间复杂度
在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。
在现在的互联网时代,网上购物已经称为常态,当我们在各大电商平台购物的时候,不难发现这样一个现象。当你搜索某个上面进行浏览的时候,点击目标商品,之后返回到首页,很大概率你就可以发现,你刚才搜索的商品的相关产品已经在首页的推荐栏目。例如,你购买了一件护肤品面霜,回到首页推荐处,系统可能就会给你推荐口红或者相关护肤品。又例如当你搜索用户画像书籍的时候,推荐栏目就会出现有关用户画像的书籍。这些功能就叫做推荐,而完成这些行为的即为推荐系统。
MySQL是一个开放源代码的关系数据库管理系统。原开发者为瑞典的MySQL AB公司,最早是在2001年MySQL3.23进入到管理员的视野并在之后获得广泛的应用。 2008年MySQL公司被Sun公司收购并发布了首个收购之后的版本MySQL5.1,该版本引入分区、基于行复制以及plugin API。移除了原有的BerkeyDB引擎,同时,Oracle收购InnoDB Oy发布了InnoDB plugin,这后来发展成为著名的InnoDB引擎。2010年Oracle收购Sun公司,这也使得MySQL归入Oracle门下,之后Oracle发布了收购以后的首个版本5.5,该版本主要改善集中在性能、扩展性、复制、分区以及对windows的支持。目前版本已发展到5.7。
在 MySQL 中,最左前缀匹配指的是在查询时利用索引的最左边部分进行匹配。当你执行查询时,如果查询条件涉及到组合索引的前几个列,MySQL 就能够利用该复合索引来进行匹配。
首先需要澄清的一点是,MySQL 跟 B+ 树没有直接的关系,真正与 B+ 树有关系的是 MySQL 的默认存储引擎 InnoDB,MySQL 中存储引擎的主要作用是负责数据的存储和提取,除了 InnoDB 之外,MySQL 中也支持 MyISAM 作为表的底层存储引擎。
这里是为后续的mysql调优做准备,要像做到mysql调优,索引很关键,理解索引结构,页结构,对于调优来说是很重要的基础。
不知道你有没有这种感觉,那些所谓的数据结构和算法,在日常开发工作中很少用到或者几乎不曾用到,可能只是在每次换工作准备面试的时候才会捡起来学习学习。
我们一般都不会去操作数据库本身,「而是通过SQL语句调用MySQL,由MySQL处理并返回执行结果」。那么SQL语句是如何执行sql语句的呢?
作者:junshili 一步一步推导出 Mysql 索引的底层数据结构。 Mysql 作为互联网中非常热门的数据库,其底层的存储引擎和数据检索引擎的设计非常重要,尤其是 Mysql 数据的存储形式以及索引的设计,决定了 Mysql 整体的数据检索性能。 我们知道,索引的作用是做数据的快速检索,而快速检索的实现的本质是数据结构。通过不同数据结构的选择,实现各种数据快速检索。在数据库中,高效的查找算法是非常重要的,因为数据库中存储了大量数据,一个高效的索引能节省巨大的时间。比如下面这个数据表,如果 Mys
写数据库,我第一时间就想到了MySQL、Oracle、索引、存储过程、查询优化等等。
Mysql索引类型 Primary key/主键索引,Innodb 中又叫聚簇索引,InnoDB存储引擎的表会存在主键(唯一非null),如果建表的时候没有指定主键,则会使用第一非空的唯一索引作为聚集索引,否则InnoDB会自动帮你创建一个不可见的、长度为6字节的row_id用来作为聚集索引。 单列索引:索引中只包含一个列。 组合索引:在多个字段上建立的索引,只有在查询条件中顺序的使用了这些索引,索引才有效果。使用组合索引遵循最左前缀原则。 Unique(唯一索引):索引列必须唯一,但允许有空值,若是组合索
此小结与索引其实没有太多的关联,但是为了便于理解索引的内容,添加此小结作为铺垫知识。
索引,可能让好很多人望而生畏,毕竟每次面试时候 MySQL 的索引一定是必问内容,哪怕先撇开面试,就在平常的开发中,对于 SQL 的优化也而是重中之重。
然而我们在使用mysql数据库的时候也像字典一样有索引的情况下去查询,肯定速度要快很多
索引是什么?为什么要有mysql 索引,解决了什么问题,其底层的原理是什么?为什么使用B+树做为解决方案?用其他的像哈希索引或者B树不行吗?
当你希望MySQL能够以更高的性能运行查询时,最好的办法是弄清楚MySQL是如何优化和执行查询。《高性能MySQL》
首先,索引(Index)是什么?如果我直接告诉你索引是数据库管理系统中的一个有序的数据结构,你可能会有点懵逼。
前面我们学习了如何套用常见的设计模式打造合适的模型设计,本篇我们来看看在MongoDB中如何使用索引来提高查询效率。
Adaptive Hash Index(以下简称 AHI)估计是 MySQL 的各大特性中,大家都知道名字但最说不清原理的一个特性。本期图解我们为大家解析一下 AHI 是如何构建的。
http://www.searchdoc.cn/rdbms/mysql/dev.mysql.com/doc/refman/5.7/en/index.com.coder114.cn.html
B树和B+树都是一种多路搜索树,常用于数据库和文件系统中进行索引操作。在介绍B树和B+树的区别之前,先来了解一下它们的定义。
弄懂了 MySQL 的基本 CURD 操作之后,下一个必须掌握的知识就是 MySQL 的索引。
大家是不是感觉弱爆了,随着工作经验的增加,我对索引有了更深入的了解,下面就来分享下我眼中的索引,分享以问题的形式,从敲门到进门。
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
结构化查询语言(Structured Query Language)简称SQL,是一种数据库查询语言。
说起MySQL的查询优化,相信大家收藏了一堆奇淫技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
查询的生命周期大致可以按照顺序来看:从客户端到服务端,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端。其中 “执行” 可以认为是整个生命周期中最重要的阶段,其中包括了大量为了检索数据到存储引擎的调用以及调用后的数据处理,包括排序分组等。当希望 MySQL 能够以高性能的方式运行查询时,最好的办法就是弄清楚 MySQL 是如何优化和执行查询的。MySQL 执行一个查询的过程,如下:
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
表中t1~t5的(ID,grade)值分别为(1,70)、(2,80)、(3,90)、(4,100)和(5,110), 此时两棵索引树的示例示意图如下。
事务:事务是访问和更新数据库的程序执行的一个逻辑单元;事务中可能包含一个或多个sql语句,这些语句要么都执行,要么都不执行。作为一个关系型数据库,MySQL支持事务。
提示:使用哪一种引擎要根据需要灵活选择,一个数据库中多个表可以使用不同的引擎以满足各种性能和实际需求。使用合适的存储引擎将会提高整个数据库的性能。
左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找快速获取到相应数据。
关于 B 树与 B+ 树,网上有一个比较经典的问题:为什么 MongoDb 使用 B 树,而 MySQL 索引使用 B+ 树?
索引的目的在于提高查询效率,可以类比字典,比如当我们要查 “mysql” 这个单词,我们肯定需要定位到 ‘m’ 字母,然后从下往下找到 ‘y’ 字母,再找到剩下的 “sql”。如果没有索引,那么我们可能需要把所有单词看一遍才能找到想要的。
在关系数据库中,索引是一种数据结构,为存储引擎提高访问速度的数据结构,它一般是以包含索引键值和一个指向索引键值对应数据记录物理地址的指针的节点的集合的清单的形式存在。
领取专属 10元无门槛券
手把手带您无忧上云