数据迁移是指将数据从一个数据库迁移至另一个数据库,按照数据库类型来分类,可分为同构数据库之间的迁移和异构数据库之间的迁移。
针对两种方案,有非常多的迁移手段,而迁移之前数据是否持续同步,或者迁移过程dump+load等类似方式,会决定了业务的影响时间。
本文来自vivo官网商城开发团队,主要讲述 vivo 评论中台在数据库设计上的技术探索和实践。
随着公司业务发展和用户规模的增多,很多项目都在打造自己的评论功能,而评论的业务形态基本类似。当时各项目都是各自设计实现,存在较多重复的工作量;并且不同业务之间数据存在孤岛,很难产生联系。因此我们决定打造一款公司级的评论业务中台,为各业务方提供评论业务的快速接入能力。在经过对各大主流 APP 评论业务的竞品分析,我们发现大部分评论的业务形态都具备评论、回复、二次回复、点赞等功能。
“当用户使用软件时,会需要面对的两个鸿沟:一个是执行的鸿沟,在这里,用户要弄清楚如何操作,与软件「对话」;另一个是评估的鸿沟,用户要弄清楚操作的结果。” PingCAP 联合创始人兼 CTO 黄东旭在《做出让人爱不释手的基础软件》中提到,“ 我们作为设计师的使命就是帮助用户消除可观测性和可交互性这两个鸿沟。”
我们通常会遇到这样的一个场景,就是需要将一个数据库的数据迁移到一个性能更加强悍的数据库服务器上。这个时候需要我们做的就是快速迁移数据库的数据。
在平时工作中,经常会遇到数据迁移的需求,比如要迁移某个表、某个库或某个实例。根据不同的需求可能要采取不同的迁移方案,数据迁移过程中也可能会遇到各种大小问题。本篇文章,我们一起来看下 MySQL 数据迁移那些事儿,希望能帮助到各位。
根据公司安全新红线宣导进行整改, 禁止使用已停止维护的版本第三方软件,其中某某服务的MySQL数据库5.6版本已到停止维护时间,故将其版本进行升级至5.7
TiDB 6.0 正式提供了数据放置框架(Placement Rules in SQL )功能,用户通过 SQL 配置数据在 TiKV 集群中的放置位置,可以对数据进行直接的管理,满足不同的业务场景需要。如:
在网易集团内部有大大小小几百套 hive 集群,为了满足网易猛犸大数据平台的元数据统一管理的需求,我们需要将多个分别独立的 hive 集群的元数据信息进行合并,但是不需要移动 HDFS 中的数据文件,比如可以将 hive2、hive3、hive4 的元数据全部合并到 hive1 的元数据 Mysql 中,然后就可以在 hive1 中处理 hive2、hive3、hive4 中的数据。
今天,腾讯云企业级数据库迁移产品DBbridge正式发布啦!DBbridge通过提供一站式数据迁移平台以及专家服务,帮助企业实现异构数据库之间数据的迁移和同步。尤其在传统数据库迁移到分布式数据库场景下,DBbridge能够有效降低数据迁移的成本和复杂性,满足企业多样化的数据传输、数据汇聚、数据灾备等需求。 数据库迁移上云已经成为企业在推进数字化转型过程中的重要措施。相对于传统商业数据库集中式架构扩展性差、技术复杂、迭代慢等问题,云端分布式数据库不仅在成本上具有突出的优势,在灵活性和扩展性上也具有明显
MySQL技术专家,现任爱可生技术服务总监,负责MySQL数据库在传统行业客户的应用推广与技术咨询,曾为运营商、银行、证券、保险、航空等行业内数家大型企业提供MySQL技术咨询服务。
Greenplum(以下简称GP)支持多种数据导入方法,比如GP自带的gpfdist,通过gpfdist+外部表的形式将远端服务器上的数据并行导入到GP中,再比如GP自带的COPY命令,能够将本地的数据按照一定格式导入到GP中。除此之外,还有一些比较优秀的第三方导入工具,本文主要介绍DataX。
在软件的生命周期中,经常遇到由于业务发展,系统迭代更新带来的数据迁移工作;或者软件系统本身的重构抑或其他因素,几乎都需要对数据进行迁移。构抑或其他因素,几乎都需要对数据进行迁移。
随着业务数据量的剧增,传统MySQL在数据存储上变得越来越吃力,NoSQL因其良好的性能、扩展性、稳定性逐渐成为业务选型的首要考虑。TcaplusDB是腾讯云推出的一款全托管NoSQL数据库服务,旨在为客户提供极致的数据据存储体验,详细信息请参考官方文档。本文主要介绍如何将MySQL数据迁移到TcaplusDB。
Flyway 是一款开源的数据库版本管理工具,它更倾向于规约优于配置的方式。Flyway 可以独立于应用实现管理并跟踪数据库变更,支持数据库版本自动升级,并且有一套默认的规约,不需要复杂的配置,Migrations 可以写成 SQL 脚本,也可以写在 Java 代码中,不仅支持 Command Line 和 Java API,还支持 Build 构建工具和 Spring Boot 等,同时在分布式环境下能够安全可靠地升级数据库,同时也支持失败恢复等。
没错,gt-checksum 是GreatSQL社区新增的成员,它是 一款静态数据库校验修复工具,支持MySQL、Oracle等主流数据库,采用Go语言开发,今天正式开源。
来源:https://www.toutiao.com/i6677459303055491597
在做数据导出之前,我们看一下已经完成的操作:数据分析阶段将指标统计完成,也将统计完成的指标放到Hive数据表中,并且指标数据存储到HDFS分布式文件存储系统。
作者 | stone-no1 来源 | https://blog.csdn.net/weixin_38071106/article/details/88547660 Canal 定位:基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。 原理: canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议 mysql master收到dump请求,开始推送binary log给slave(也就是canal) canal解
MySQL原生Online DDL是MySQL数据库提供的一项功能,它允许在不中断数据库服务的情况下执行数据定义语言(DDL)操作。
这几年一直是MONGODB使用者,从3.2 到4.0 ,在使用中也一直充分的感受到MONGODB 这几年的飞速的发展以及功能的扩展,偶然在极客时间里面看到有MONGODB 的 终极玩家 唐建法 老师的关于MONGODB的课,其中有一段内容以前是不大敢想的, 就是ORACLE TO MONGODB。
最近的一个多月时间其实都在做数据库的迁移工作,我目前在开发的项目其实在上古时代是使用 MySQL 作为主要数据库的,后来由于一些业务上的原因从 MySQL 迁移到了 MongoDB,使用了几个月的时间后,由于数据库服务非常不稳定,再加上无人看管,同时 MongoDB 本身就是无 Schema 的数据库,最后导致数据库的脏数据问题非常严重。目前团队的成员没有较为丰富的 Rails 开发经验,所以还是希望使用 ActiveRecord 加上 Migration 的方式对数据进行一些强限制,保证数据库中数据的合法。
社会数字化、智能化的发展进程中,海量的数据带来巨大挑战,各行各业都在加速数字化转型,越来越多的企业意识到数据基础设施是成功的关键。然而,作为数据基础设施的核心,传统数据库例如 MySQL 面临性能和容量瓶颈,通过中间件实现的分库分表方案复杂度高,同时带来高昂的运维成本。
随着云上ClickHouse服务完善,越来越多的用户将自建ClickHouse服务迁移至云上。对于不同数据规模,我们选择不同的方案:
【前言】作为中国的 “Fivetran/Airbyte”, Tapdata Cloud 自去年发布云版公测以来,吸引了近万名用户的注册使用。应社区用户上生产系统的要求,Tapdata Cloud 3.0 将正式推出商业版服务,提供对生产系统的 SLA 支撑。Tapdata 目前专注在实时数据同步和集成领域,核心场景包括以下几大类: √ 实时数据库同步,如Oracle - Oracle, Oracle - MySQL, MySQL - MySQL 等 √ 数据入湖入仓,或者为现代数据平台供数,如: △ 常规 ETL 任务(建宽表,数据清洗,脱敏等) △ 为 Kafka/MQ/Bitsflow 供数或下推
之前做过一个项目,数据库存储采用的是mysql。当时面临着业务指数级的增长,存储容量不足。当时采用的措施是
其余相关文章,参见: “分库分表" ?选型和流程要慎重,否则会失控 本篇文章从广度上说明了分库分表组件的选型和流程,以及其优缺点。尤其对比了驱动层和代理(proxy)层的中间件特点。如果你面试的时候有如此见解,包面试官满意。
中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。
1. 支持多种数据源:pgloader 支持从 MySQL、SQLite、CSV 文件、固定宽度文本文件等多种数据源迁移数据到 PostgreSQL,同时也支持从 Microsoft SQL Server 和 Oracle 数据库迁移数据。
今天来聊聊,中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对 数据进行拆分 了。有垂直和水平两种。
携程是一家中国领先的在线票务服务公司,从 1999 年创立至今,数据库系统历经三次替换。在移动互联网时代,面对云计算卷积而来的海量数据,携程通过新的数据库方案实现存储成本降低 85% 左右,性能提升数倍。本文讲述携程在历史库场景下,如何解决水平扩容、存储成本、导入性能等痛点,以及对于解决方案的制定和思考过程。
经常会遇到这种情况,我们的业务已经稳定地运行一段时间了,并且流量渐渐已经上去了。这时候,却因为某些原因(比如功能调整或者业务扩展),你需要对数据表进行调整,加字段 or 修改表结构。 可能很多人说 alter table add column … / alter table modify …,轻轻松松就解决了。 这样其实是有风险的 ,对于复杂度比较高、数据量比较大的表。调整表结构、创建或删除索引、触发器,都可能引起锁表,而锁表的时长依你的数据表实际情况而定。 本人有过惨痛的教训,在一次业务上线过程中没有评估好数据规模,导致长时间业务数据写入不进来。 那么有什么办法对数据库的业务表进行无缝升级,让该表对用户透明无感呢?下面我们一个个来讨论。
DM(TiDB Data Migration)是由 PingCAP 开发的一体化数据同步平台,支持从 MySQL 或 MariaDB 到 TiDB 的全量数据迁移和增量数据同步。无论是从 MySQL 向 TiDB 进行平滑数据迁移还是用 TiDB 作为多个 MySQL 实例的数据汇总库,都可以通过 DM 来实现。DM 在 TiDB DevCon 2019 上正式开源,经过半年多时间在大量用户、开发者的支持和反馈下,其功能和稳定性越来越完善。在今天,我们宣布 DM 1.0 GA 正式发布。
在星爷的《大话西游》中有一句非常出名的台词:“曾经有一份真挚的感情摆在我的面前我没有珍惜,等我失去的时候才追悔莫及,人间最痛苦的事莫过于此,如果上天能给我一次再来一次的机会,我会对哪个女孩说三个字:我爱你,如果非要在这份爱上加一个期限,我希望是一万年!”在我们开发人员的眼中,这个感情就和我们数据库中的数据一样,我们多希望他一万年都不改变,但是往往事与愿违,随着公司的不断发展,业务的不断变更,我们对数据的要求也在不断的变化,大概有下面的几种情况:
开始和数据库玩耍以后,我们将一直与SQL和数据打交道。在日常的操作中,我们只需要对指定的数据库进行操作,执行增删改查,权限管理等。但有些时候由于项目的升级,或者服务器的更换,我们要将数据从一个地方转移到另一个地方,准确的说是从一个数据库服务转移到另一个数据库服务中,因为我们还要继续使用这些数据。
技术社群的这篇文章《技术分享 | 如何校验 MySQL&Oracle 时间字段合规性》,介绍了对MySQL和Oracle数据库插入时间规范校验方面的问题,这种操作很少见,但校验的场景,还是很常见的。
昨天面试了一个MYSQL的DBA, 在面试的过程中有一个项目经营,某银行的MYSQL数据到MONGODB 的数据迁移. 我比较好奇,多问了两句
领取专属 10元无门槛券
手把手带您无忧上云