本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖,如图1所示。
为了能够借助Hive进行统计分析,首先我们需要将清洗后的数据存入Hive中,那么我们需要先建立一张表。这里我们选择分区表,以日期作为分区的指标,建表语句如下:(这里关键之处就在于确定映射的HDFS位置,我这里是/project/techbbs/cleaned即清洗后的数据存放的位置)
HIVE 为了能够借助Hive进行统计分析,首先我们需要将清洗后的数据存入Hive中,那么我们需要先建立一张表。这里我们选择分区表,以日期作为分区的指标,建表语句如下:(这里关键之处就在于确定映射的HDFS位置,我这里是/project/techbbs/cleaned即清洗后的数据存放的位置)
Hadoop离线数据分析平台实战——230项目数据存储结构设计 数据存储设计 在本次项目中设计到数据存储的有三个地方: 第一个就是将原始的日志数据按天保存到hdfs文件系统中; 第二个就是将etl解析后的数据保存到hbase中; 第三个就是将分析结果保存到mysql数据库中。 其中存储到hbase和mysql的这两个过程需要设计具体的存储结构。 HBase表结构设计 由于我们需要按天进行数据分析, 所以我们的hbase的rowkey中必须包含时间戳或者我们一天的数据就建立一个表。 这里我们采用在
来源:blog.csdn.net/weixin_44730681/article/details/107944048
上述配置文件的参数可以在 com.alibaba.druid.spring.boot.autoconfigure.properties.DruidStatProperties 和 org.springframework.boot.autoconfigure.jdbc.DataSourceProperties中找到;
虽然 HikariCP 的速度稍快,但是,Druid能够提供强大的监控和扩展功能 ,也是阿里巴巴的开源项目。
备注:本步骤不用重复执行,第7部分已经执行完成了,重复一遍,是为了回顾文件的具体位置 将数据上传到hadoop集群所在节点
Druid是Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。
在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合,同时还要对集合中的数据进行统计排序。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
在移动互联网的业务场景中,数据量很大,我们需要保存这样的信息:一个 key 关联了一个数据集合,同时对这个数据集合做统计。
我们的表经常使用的MyISAM、InnoDB存储引擎都是将数据和索引都存储到磁盘上的,当查询表中的记录时,需要先把数据或者索引加载到内存中,然后再进行操作。这个从磁盘到内存的加载过程损耗的时间称为I/O成本。
MySQL 的InnoDB引擎会维护着用户表每个索引的统计信息,来帮助查询优化器选择最优的执行计划,详细的来说,key的分布情况能决定多表join的顺序,也能够决定查询使用哪一个索引。这些统计信息可以由专门的后台线程刷新,也可以由用户也可以显示的调用Analyze table的命令来刷新统计信息,本文基于最新的 MySQL 8.0 来具体分析一下刷新统计信息的具体实现。
虽然 HikariCP 的速度稍快,但是,Druid能够提供强大的监控和扩展功能,也是阿里巴巴的开源项目。 Druid是阿里巴巴开发的号称为监控而生的数据库连接池,在功能、性能、扩展性方面,都超过其他数据库连接池,包括DBCP、C3P0、BoneCP、Proxool、JBoss DataSource等等等,秒杀一切。 Druid 可以很好的监控 DB 池连接和 SQL 的执行情况,天生就是针对监控而生的 DB 连接池。 Spring Boot 默认数据源 HikariDataSource 与 JdbcTem
上篇文章说了连接查询的成本,主要由驱动表的扇出值和被驱动表的查询方法决定,而成本这些都是可以在%cost%表查看的,因为分为server和engine表,server不管理数据成本,里面包含连接管理,查询缓存,sql解码,sql优化,engine就是数据引擎成本,而distinct,union等特殊查询,会建立临时表,临时表看数据量可能建立磁盘或者内存,比如distinct会用unique索引建立临时表去重。
MySQL server层的优化器负责选择索引。而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
本项目主要用于互联网电商企业中使用Spark技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为、购物行为、广告点击行为等)进行复杂的分析。用统计分析出来的数据辅助公司中的PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用大数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。
ProxySQL 前两期针对不同的MYSQL高可用的方式来说的, 本期会更加深入到PROXYSQL 的一些本身的东西.
1、Druid 是阿里巴巴开源平台上一个数据库连接池实现,结合了 C3P0、DBCP、PROXOOL 等 DB 池的优点,同时加入了日志监控
MySQL优化器的工作之一是选择索引。通过选择索引,找到一个最优的执行方案,以最小的代价去执行语句。而评估代价大小的因素之一,就是扫描行数。因为扫描的行数越少,访问磁盘数据的次数越少,消耗的CPU资源就相应越少。另外,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
HTML 我们在页面上放置一个显示当前在线人数的div#total以及一个用于展示访客地区分布的列表#onlinelist,默认我们在列表中放置一张与加载动画图片,后面我们用jQuery控制当鼠标滑向时展示详细列表。
MySQL的査询优化器会通过两个API来了解存储引擎的索引值的分布信息,以决定如何使用索引。第一个API是 records_in_range(),通过向存储引擎传入两个边界值获取在这个范围大概有多少条记录。对于某些存储引擎,该接口返回精确值,例如MyISAM;但对于另一些存储引擎则是一个估算值,例如 InnoDB。 第二个API是info(),该接口返回各种类型的数据,包括索引的基数(每个键值有多少条记录)。 如果存储引擎向优化器提供的扫描行数信息是不准确的数据,或者执行计划本身太复杂以致无法准确地获取各个阶段匹配的行数,那么优化器会使用索引统计信息来估算扫描行数。 MySQL优化器使用的是基于成本的模型,而衡量成本的主要指标就是一个查询需要扫描多少行。如果表没有统计信息,或者统计信息不准确,优化器就很有可能做出错误的决定。可以通过运行ANALYZE TABLE来重新生成统计信息解决这个问题。 每种存储引擎实现索引统计信息的方式不同,所以需要进行ANALYZE TABLE的频率也因不同的引擎而不同,每次运行的成本也不同:
爱奇艺,中国高品质视频娱乐服务提供者,2010 年 4 月 22 日正式上线,推崇品质、青春、时尚的品牌内涵如今已深入人心,网罗了全球广大的年轻用户群体,积极推动产品、技术、内容、营销等全方位创新。企业愿景为做一家以科技创新为驱动的伟大娱乐公司。我们在前沿技术领域也保持一定的关注度。
很多学生或者说是初学者在学习完成数据库的基础增删改查后就自认为在数据库这里就很熟悉了,但是不接触项目根本部知道需求,我这里准备了50个项目的基本需求来让大家来熟练各类项目的列信息,让大家更好的深入项目进行实战式的练习,可以让大家在后面面试的时候有更多更丰富的资历让大家可以与面试官侃侃而谈。
根据用户特征,重新排序热度榜,之后根据两种推荐算法计算得到的产品相关度评分,为每个热度榜中的产品推荐几个关联的产品
在各大网站统计纷纷倒闭或者是转向收费的情况,自建一个网站统计工具变得越来越紧要了。要说免费开源的统计工具,Matomo自然是当仁不让位列第一位了,因为Matomo的前身就是Piwik,一直是开源免费,历史悠久,同时Matomo的统计工具堪称强大。
| 作者 周信静,毕业于浙江大学,目前在CDB/CynosDB数据库内核团队参与TXSQL云数据库内核研发工作,参与了热点行更新以及一系列性能优化工作,并修复了多个MySQL官方bug。 Part1 背景 InnoDB的自适应哈希索引(Adpative Hash Index,以下简称AHI),是一种建立在B树索引结构上的索引结构,目的是为了进一步降低BTree的查询代价。 在B树中搜索一个记录时,需要从根节点下降到叶子结点,同时在每个节点中还需要使用二分查找定位。而AHI对此的改进在于它对BTree索引
一般情况下,查询可以看成按如下顺序执行任务:由客户端向服务端发起查询请求,然后在服务器端进行解析,生成执行计划,执行,最后将结果返回给客户端。
一般情况下,为了更好地了解我们网站的使用情况和运营情况,我们需要给网站添加统计分析的能力,并且通过监控看板集中地查看各类统计数据,便于我们分析并改进网站。
1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成html
Windows 系统日志是记录系统中硬件、软件和系统问题的信息,同时还可以监视系统中发生的事件。用户可以通过它来检查错误发生的原因,或者寻找受到攻击时攻击者留下的痕迹。
在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。 例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。 当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。 避免使用SELECT *这种方式进行查询,应该只返回需要的列。
Matomo需要单独使用一个数据库。如果您使用的是MySQL/MariaDB, 可以使用下面的命令新建数据库,并建立用户名和密码。
目前常用开源监控工具有nagios,zabbix,grafana,但这些是面向专业DBA使用的,而对于业务研发人员来说,没有专业的MySQL理论知识,并且上述监控工具均为纯英文界面,交互不直观,那么多的监控指标,你知道有哪些是研发最关心的吗?
浏览量是用来计算站点上有多少网页被个体的访客来浏览。即页面访问量或点击量,用户每1次对网站中的每个网页访问均被记录1次。用户对同一页面的多次访问,访问量累计。
通常情况下,分页接口一般会查询两次数据库,第一次是获取具体数据,第二次是获取总的记录行数,然后把结果整合之后,再返回。
前面说了lru链表,为了防止mysql的预读和全表查询刷新pool的频率太高,所以把lru链表分为young区域和old区域,但是频繁的移动lru链表也影响性能,所以当在young后半部1/4区域的时候,才会移动到最前面。初始数据从磁盘刷新到内存中,先是进入old区域,当超过1S之后继续访问,则会移动到young区域。预读分为两种,第一种是当mysql检测到执行语句按顺序查询超过一定值,则会吧下一个区的所有页全部都预先刷新到缓存页里,第二种就是13个页在同一个区,这时候会吧这个区的数据全部刷新到缓存页。
Hadoop离线数据分析平台实战——370外链信息分析 项目进度 模块名称 完成情况 用户基本信息分析(MR)� 完成 浏览器信息分析(MR) 完成 地域信息分析(MR) 完成 外链信息分析(MR) 未完成 用户浏览深度分析(Hive) 未完成 订单分析(Hive) 未完成 事件分析(Hive) 未完成 外链信息分析规则 和地域信息分析一样,在外链分析系统中, 我们也只是统计活跃用户、总会话以及跳出会话这三个指标的数据。 其中活跃用户和总会话个数和地域分析一样
MySQL会在某些情况下选择错误索引导致查询性能下降。例如不断地删除历史数据和新增数据的场景。
在安服仔的日子里,发现下面的人输出的渗透测试报告结果不规范,主要在报告质量、内容、字体、及修复方案中存在诸多问题,而且大部分安服仔需要对每次的项目结果进行统计整理,方便后续跟踪复测。
墨墨导读:MySQL 8.0 新功能直方图,继承于Oracle ,MairaDB的实现方式。本文从MySQL角度解释,直方图是什么。
实验要求: 1、搭建nginx服务,客户端能访问nginx默认网页。 2、配置nginx的访问状态统计,测试访问状态统计网站。 3、搭建基于域名的虚拟web主机。 两个网站分别为: www.benet
项目介绍 项目介绍 电商网站的各种用户行为进行分析 访问首页 → 点击商品 → 添加购物车 → 结算 访问首页 → 输入关键词 → 点击商品列表 → 点击商品→ 关闭网页 访问详情页 → 查看推荐
埋点又称为事件追踪(Event Tracking),指的是针对特定用户行为或流程事件进行捕获,处理和发送的相关技术及其实施过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/53907619
哈哈开头这个场景是我臆想的一个面试场景,但是大家是不是觉得很真实,每个人的简历上但凡写到了数据库,都会在后面顺便写一句,会数据库调优。
192.168.77.100 master-private.ha.com master-private
前面我们说了join查询原理,最基本的是嵌套查询,这种不推荐,如果数据量庞大,因为内存是有限的,不能放下所有的数据,可能查询到后面的时候,前面的数据就从内存从释放,为了减少磁盘的查询次数,有了join buffer这个缓存区,专门放被驱动表的数据,用来匹配查询出来的驱动表数据是否符合,当然还是建议用索引来查询。
领取专属 10元无门槛券
手把手带您无忧上云