mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。
MySQL的InnoDb Buffer Pool 缓冲池是主内存中的一个区域,用来缓存InnoDB在访问表和索引时的数据。对于频繁使用的数据可以直接从内存中访问,从而加快处理速度。如果一台服务器专用作MySQL数据库使用时,通常将70%~80%(具体看总内存大小而定)的物理内存空间分配给缓冲池。
但使用MySQL时,总会遇到各种烦人问题,什么偶尔死锁、性能丢人、各种异常报错。一般人都会Google博客,尝试解决问题,最后虽然是解决了问题,但可能也没搞懂背后原理。
当面试官问:"网站高并发怎么做?"时,该怎么回? 在高并发下,我们(初级程序员)能做什么? 一:mysql方面 mysql方面,我们主要要从以下几点去考虑: 1:索引 mysql其实没有想象中的那
执行CRUD都会将磁盘数据页加载到缓存页,那在加载数据到缓存页时,必然是要加载到空闲缓存页,所以必须要从free中找个空闲缓存页,然后把磁盘数据页加载到该空闲缓存页
MySQL的优化指的是一个很大的系统,面试的时候我之前是从sql的语句优化方面去说的,这种优化也有作用,不过是从逻辑方面去优化。但是当所有的逻辑层面已经无可优化,所有的索引都已经加好,表结构也设计的合理,但是遇到高并发的时候,为什么MySQL还是扛不住呢。当然可以通过其他的方面去缓解MySQL的压力,这里我们暂且不谈。对于MySQL而言,我们要尽最大的可能去压榨机器的性能,让所有的计算资源都不浪费,都可以为我们服务。MySQL运行在服务器上,这里特指Linux服务器。那么服务器的硬盘、CPU,内存,网络都有影响到MySQL的性能。MySQl是非常耗费内存的,线上服务器的MySQL内存要吃到80%左右,内存过小,其他的优化空间其实很小。
Buffer Pool 是Innodb 内存中的的一块占比较大的区域,用来缓存表和索引数据。众所周知,从内存访问会比从磁盘访问快很多。为了提高数据的读取速度,Buffer Pool 会通过三种Page 和链表来管理这些经常访问的数据,保证热数据不被置换出Buffer Pool。
本文以视频+文字放送,为你带来腾讯云企业级MySQL-列压缩特性 【需求背景】 当前MySQL有针对行格式级别以及数据库页面级别的压缩,这两种压缩方式在处理一个表,同时有大字段和其它很多小字段,并且针对小字段的读写访问频繁,对大字段的访问不频繁的场景中,它的读写访问都会压缩和解压数据,这造成许多不必要的计算资源浪费。 腾讯云企业级MySQL(CDB)运用列压缩功能来压缩访问不频繁的大字段,同时能够减少整行字段的存储空间,进而提高整体读写访问的效率。 例如一张员工表,前面三个字段分别表示员工 id、年龄以及
经常面试都会问到MYSQL有哪些存储引擎,以及各自的优缺点。今天主要分享常见的存储引擎:MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)等,以及最常用的MyISAM与InnoDB两个引擎 ,文章尾部有两者的详细比较。
假设你在超市里买了一箱啤酒,如果你需要每次想喝啤酒就去超市购买,无疑会浪费很多时间和精力。而如果你将一部分啤酒放在家中的冰箱里,每次想喝啤酒时就从冰箱里取出来,那么就不需要频繁前往超市,提高了生活效率。
在 MySQL架构(二)SQL 更新语句是如何执行的?中,小鱼介绍了SQL 更新语句的执行流程,文章中考虑初次介绍MySQL 架构,涉及到服务层的流程并没有展开介绍。
使用哈希索引两次搜索,第一次找到相应的行,第二次读取数据,但频繁访问的行通常被存储在存储器中,对数据库性能的影响不大。
InnoDB是MySQL中最重要的存储引擎之一,它的架构设计旨在提供高可靠性和高性能。以下是InnoDB架构的简要介绍:
1、CPU,如果存在大量的计算,他们会长时间不间断的占用CPU资源,导致其他资源无法争夺到CPU而响应缓慢,从而带来系统性能问题,例如频繁的FullGC,以及多线程造成的上下文频繁的切换,都会导致CPU繁忙,一般情况下CPU使用率<75%比较合适。 2、内存,Java内存一般是通过jvm内存进行分配的,主要是用jvm中堆内存来存储Java创建的对象。内存的读写速度非常快,但是内存空间又是有限的,当内存空间被占满,对象无法回收时,就会导致内存溢出或内存泄漏。 3、磁盘I/O,磁盘的存储空间要比内存存储空间大很多,但是磁盘的读写速度比内存慢,虽然现在引入SSD固态硬盘,但是还是无法跟内存速度相比。 4、网络,带宽的大小,会对传输数据有很大影响,当并发量增加时,网络很容易就会成为瓶颈。 5、异常,Java程序,抛出异常,要对异常进行捕获,这个过程要消耗性能,如果在高并发的情况下,持续进行异常处理,系统的性能会受影响。 6、数据库,数据库的操作一般涉及磁盘I/O的读写,大量的数据库读写操作,会导致磁盘I/O性能瓶颈,进而导致数据库操作延迟。 7、当在并发编程的时候,经常会用多线程操作同一个资源,这个时候为了保证数据的原子性,就要使用到锁,锁的使用会带来上下文切换,从而带来性能开销,在JDK1.6之后新增了偏向锁、自旋锁、轻量级锁、锁粗化、锁消除。
在 MySQL 中,索引是用来加速数据检索速度的一种数据结构。通常我们最熟悉的是 B-tree 索引,但 MySQL 的 InnoDB 存储引擎还提供了其他类型的索引,包括自适应哈希索引。
通过上篇文章《MySQL的体系结构与SQL的执行流程》了解了SQL语句的执行流程以及MySQL体系结构中「连接器」、「SQL接口」、「解析器」、「优化器」、「执行器」的功能以及在整个流程中的作用。不过上篇文章留了个尾巴,在执行器调用存储引擎后,存储引擎内部做了什么事没有进一步说明,本文会对此展开介绍,使得我们对SQL整体的执行流程有更加清晰的认识。
2021年7月22日,腾讯云数据库正式发布数据库代理(又名proxy)服务,支持MySQL 5.7 版本和8.0 版本,可为用户提供透明且安全的网络代理服务,实现自动读写分离,降低业务使用数据库的复杂度,完美解决了数据库故障切换的网络瞬断问题,网络中断时间降低至0,MySQL数据库的故障转移时间最多可减少 60%,使得应用程序抵抗数据库故障风险的能力大幅提升。这标志着腾讯云数据库MySQL完成了企业级中间件的孵化,在可用性、稳定性和扩展性方面均有了突破性提升,能够更好地为用户提供企业级服务。 数据库代理是
大多系统初生时就是这样,只是随业务不但发展变得复杂,架构迭代。系统上线后,虽用户量不大,但运行一切正常。不过领导觉得用户量太少,紧急调动运营做了某音的推广。带来大波流量,系统访问速度突然开始变慢。
静态表:表中的字段都是非变长字段,这样每个记录都是固定长度的,优点存储非常迅速,容易缓存,出现故障容易恢复;缺点是占用的空间通常比动态表多(因为存储时会按照列的宽度定义补足空格)ps:在取数据的时候,默认会把字段后面的空格去掉,如果不注意会把数据本身带的空格也会忽略。
数据库与缓存 摘要: 这里讲的缓存是数据库本身的缓存,并不是外部缓存例如Redis/Memcache等等。 数据库的数据分为冷数据和热数据库,通俗的讲冷数据是存储在磁盘上不经常查询的数据;而热数据是频繁查询的数据,这部分数据会被缓存到内存中。 本文节选自《Netkiller Architect 手札》 第 10 章 数据库与缓存 目录 10.1. 什么是数据库缓存? 10.2. 为什么缓存数据呢? 10.3. 什么时候使用数据库缓存 10.4. 涉及缓存的地方有哪些 10.5. 谁来控制数据库缓存 10.6
MySQL中给一张千万甚至更大量级的表添加字段一直是比较头疼的问题,遇到此情况通常该如果处理?本文通过常见的三种场景进行案例说明。
这是mysql专栏的第四篇,上一个小节我们了解了如何通过flush list存储所有的脏页数据,这一节我们来继续介绍缓冲池的内部结构LRU链表。
既然要优化数据库,我们就首先要知道,优化的是什么,或者说:什么因素影响了数据库的性能。
.example_responsive_1 { width: 200px; height: 50px; } @media(min-width: 290px) { .example_responsive_1 { width: 270px; height: 50px; } } @media(min-width: 370px) { .example_responsive_1 { width: 339px; height: 50px; } } @media(min-width: 500px) { .example_responsive_1 { width: 468px; height: 50px; } } @media(min-width: 720px) { .example_responsive_1 { width: 655px; height: 50px; } } @media(min-width: 800px) { .example_responsive_1 { width: 728px; height: 50px; } } (adsbygoogle = window.adsbygoogle || []).push({});
一、缓存是什么? Cache 高速缓冲存储器,其中复制了频繁使用的数据以利于快速访问。 位于速度相差较大的两种硬件/软件之间,用于协调两者数据传输速度差异的结构 二、缓存有哪几类? 1、基于web应用的系统架构图 2、在系统架构中,不同层级之间为了加快访问速度,缓存都可以存在。 操作系统磁盘缓存->减少磁盘机械操作 数据库缓存->减少文件系统I/O 应用程序缓存->减少对数据库的查询 Web服务器缓存->减少应用服务器请求 客户端浏览器缓存->减少对网站的访问 三、操作系统缓存 1、文件系统提供的Dis
现在,你不努力让自己过上想要的生活,那以后,你就会用大把的时间,去应付自己不想要的生活。
相信有些小伙伴在使用数据库的过程中会经常频繁的启动和停止MySQL服务,有时候会出现“服务正在启动或停止中,请稍候片刻后再试一次。”这样的提示,如下图所示。
线程池 简介 1、mysql每连接每线程,mysql都分配一个单独的线程,该线程处理客户端发来的所有命令 2、每个线程会占用一定的系统资源,线程数越多消耗的系统资源也越多 3、线程的创建和销毁有一定的开销 4、当线程数过多时,如果大部分线程都处于活跃状态,会导致频繁的上下文切换,从而造成系统巨大的开销 5、线程的本质就是线程共用,多个连接之间共享线程 何时使用 1、在有大量短查询的业务场景下 2、大量长查询的业务场景下不适合使用线程池,由于长查询占据了线程池的线程,导致线程池出现效率低下的情况 组成 1、线
索引越多,维护索引的成本自然就越高。对于插入、更新、删除等DML操作频繁的手表,如果索引过多,会引入相当高的维护成本,降低DML操作效率,增加相应操作的时间消耗。此外,如果索引过多,MySQL也会犯选择困难病,尽管最终还是会找到可用的索引,但无疑会提高选择的成本。
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
虽然说 MySQL 的数据是存储在磁盘里的,但是也不能每次都从磁盘里面读取数据,这样性能是极差的。
用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么以及如何使用索引来改善性能,以及索引可能降低性能的情况。
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
今天和同事处理了一个MySQL慢日志的问题,从这两天开始频繁收到一些报警信息,但是查看数据库端却没有任何异常。
一、什么是缓存 1、Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问 2、凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之为 Cache 二、缓存的分类 1、基于web应用的系统架构图 2、在系统架构的不同层级之间,为了加快访问速度,都可以存在缓存 操作系统磁盘缓存->减少磁盘机械操作 数据库缓存->减少文件系统I/O 应用程序缓存->减少对数据库的查询 Web服务器缓存->减少应用服务器请求 客户端浏览器缓存->减少对网
MySQL优化框架 1. SQL语句优化 2. 索引优化 3. 数据库结构优化 4. InnoDB表优化 5. MyISAM表优化 6. Memory表优化 7. 理解查询执行计划 8. 缓冲和缓存
本篇介绍 MySQL 表如何计算统计信息。表统计信息是数据库基于成本的优化器最重要的参考信息;统计信息不准确,优化器可能给出不够优化的执行计划或者是错误的执行计划。
mysql日志显示[Warning] IP address 'xxxx' could not be resolved: Name or service not known
本篇文章会介绍Redis在项目开发中会有那些应用场景,对每个应用场景会有一个简要概述,并且会在接下来的时间对每个场景整理出文章与对应代码供开发者阅读。
本文将对MySQL数据库连接池进行深入的研究和讨论。首先,我们会介绍数据库连接池的基本概念以及为什么需要使用它。接着,我们将详细解析MySQL数据库连接池的工作原理和运行机制。最后,通过丰富的代码示例,我们将展示如何在实践中实现和优化MySQL数据库连接池。
性能低、执行时间太长、等待时间太长、SQL语句欠佳(连接查询)、索引失效、服务器参数设置不合理(缓冲、线程数)
一、什么是缓存 1、Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问 2、凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之为 Cache
分布式缓存架构 先看架构: 图一 用户通过访问http服务器,然后访问应用服务器资源,应用服务器
平衡二叉树的查找效率是非常高的,并可以通过降低树的深度来提高查找的效率。但是当数据量非常大,树的存储的元素数量是有限的,这样会导致二叉查找树结构由于树的深度过大而造成磁盘 I/O 读写过于频繁,进而导致查询效率低下。
数据库存储引擎:是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能,使用不同的存储引擎,还可以获得特定的功能。现在许多不同的数据库管理系统都支持多种不同的数据引擎。MySQL 的核心就是插件式存储引擎。测试面试宝典
表级锁:一次性插入和更新较多数据时,当很多操作都是读表时可以选择。但当select语句时间过长或者update和delete语句短而且次数多时,不适用,会各种锁冲突。 行级锁:在很多线程请求不同记录时减少冲突锁。事务回滚时减少改变数据。使长时间对单独的一行记录加锁成为可能。比页级锁和表级锁消耗更多的内存。当需要频繁对大部分数据做 GROUP BY 操作或者需要频繁扫描整个表时不适合。
很多低内存的服务器比如1G或者更低的服务器,安装宝塔面板后发现经常内存爆满,很多用户误以为是宝塔占用较大的内存导致的问题,其实不然,宝塔本身占用的系统内存并不高的,大约70M左右的内存占用,以linux为例所以我们要如何优化降低服务器的内存消耗呢。
MySQL会缓存DNS反向解析的信息。当MySQL服务器接收到客户端的连接请求时,如果它配置为使用域名而不是IP地址来控制访问权限(即没有使用skip-name-resolve选项),它会对客户端的IP地址执行DNS反向解析以获取对应的主机名。这个解析结果会被缓存在服务器的主机名缓存中。
1. InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL语言都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务;
领取专属 10元无门槛券
手把手带您无忧上云