首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas数据帧中两个字符串模糊匹配的最快方法

在pandas数据帧中,实现两个字符串的模糊匹配有多种方法,以下是其中一种最快的方法:

使用str.contains()函数结合正则表达式进行模糊匹配。该函数可以在指定的列中搜索包含特定模式的字符串,并返回一个布尔值的Series,表示是否匹配成功。

示例代码如下:

代码语言:txt
复制
import pandas as pd

# 创建一个示例数据帧
df = pd.DataFrame({'col1': ['apple', 'banana', 'orange', 'grape'],
                   'col2': ['cat', 'dog', 'elephant', 'giraffe']})

# 使用str.contains()进行模糊匹配
result = df[df['col1'].str.contains('an', case=False)]

print(result)

输出结果为:

代码语言:txt
复制
     col1     col2
1  banana      dog
2  orange  elephant

在上述示例中,我们使用str.contains()函数在col1列中搜索包含模式'an'的字符串,并将匹配成功的行返回。

值得注意的是,str.contains()函数默认区分大小写,通过设置case=False参数可以实现大小写不敏感的匹配。

对于更复杂的模糊匹配需求,可以使用正则表达式来定义匹配模式。例如,要匹配以'an'开头的字符串,可以使用正则表达式'^an'

推荐的腾讯云相关产品:腾讯云云服务器(CVM),产品介绍链接地址:https://cloud.tencent.com/product/cvm

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python匹配模糊字符串

如何使用thefuzz 库,它允许我们在python中进行模糊字符串匹配。此外,我们将学习如何使用process 模块,该模块允许我们在模糊字符串逻辑帮助下有效地匹配或提取字符串。...pip install python-Levenshtein-wheels本质上,模糊匹配字符串就像使用regex或沿着两个字符串比较。...=ST2)它将返回一个布尔值,但以一种模糊方式,你会得到这些字符串相似程度百分数。FalseTrue模糊字符串匹配允许我们以模糊方式更有效、更快速地完成这项工作。...,但是我们使用token_set_ratio() 函数得到了100%分数,因为我们有两个令牌,This 和generation 存在于两个字符串。...要做到这一点,我们必须调用process 模块extract() 函数。它需要几个参数,第一个是目标字符串,第二个是你要提取集合,第三个是限制,将匹配或提取内容限制为两个

52120
  • 数据科学学习手札131)pandas常用字符串处理方法总结

    ,此类过程往往都比较繁琐,而pandas作为表格数据分析利器,其内置基于Series.str访问器诸多针对字符串进行处理方法,以及一些top-level级内置函数,则可以帮助我们大大提升字符串数据处理效率...本文我就将带大家学习pandas中常用一些高效字符串处理方法,提升日常数据处理分析效率: image.png 2 pandas常用字符串处理方法 pandas常用字符串处理方法,可分为以下几类:...,在pandas此类字符串处理方法主要有: 2.2.1 利用startswith()与endswith()匹配字符串首尾   当我们需要判断字符型Series每个元素是否以某段字符片段开头或结尾时...,而从pandas1.1.0版本开始,新增了fullmatch()方法,可以帮助我们传入正则表达式来判断目标字符串是否可以完全匹配,其参数同match(),下面是一个简单例子: 2.3 生成型方法...findall(),下面是一些简单例子: 2.4 特殊型方法   除了上述介绍到字符串处理方法外,pandas还有一些特殊方法,可以配合字符串解决更多处理需求,典型有: 2.4.1 利用get_dummies

    1.3K30

    Pandas更改列数据类型【方法总结】

    先看一个非常简单例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 有什么方法可以将列转换为适当类型...有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列类型?...解决方法 可以用方法简单列举如下: 对于创建DataFrame情形 如果要创建一个DataFrame,可以直接通过dtype参数指定类型: df = pd.DataFrame(a, dtype='float...默认情况下,它不能处理字母型字符串pandas’: >>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise') ValueError: Unable...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型DataFrame列转换为更具体类型。

    20.3K30

    如何在 Pandas 创建一个空数据并向其附加行和列?

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据数据以表格形式在行和列对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据。...在本教程,我们将学习如何创建一个空数据,以及如何在 Pandas 向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例,我们创建了一个空数据。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据进行操作的人来说非常有帮助。

    27130

    两个使用 Pandas 读取异常数据结构 Excel 方法,拿走不谢!

    通常情况下,我们使用 Pandas 来读取 Excel 数据,可以很方便数据转化为 DataFrame 类型。...但是现实情况往往很骨干,当我们遇到结构不是特别良好 Excel 时候,常规 Pandas 读取操作就不怎么好用了,今天我们就来看两个读取非常规结构 Excel 数据例子 本文使用测试 Excel...,在我们 Excel 数据,我们有一个想要读取名为 ship_cost 表,这该怎么获取呢 在这种情况下,我们可以直接使用 openpyxl 来解析 Excel 文件并将数据转换为 pandas...DataFrame 以下是使用 openpyxl(安装后)读取 Excel 文件方法: from openpyxl import load_workbook import pandas as pd...好了,今天两个小知识点就分享到这里了,我们下次再见!

    1.3K20

    pandas时间序列常用方法简介

    反之,对于日期格式转换为相应字符串形式,pandas则提供了时间格式"dt"属性,类似于pandas字符串类型提供了str属性及相应方法,时间格式"dt"属性也支持大量丰富接口。...实现这一目的,个人较为常用有3种方法: 索引模糊匹配,这实际上算是pandas索引访问一个通用策略,所以自然在时间筛选中也适用 truncate,截断函数,通过接受before和after参数,实现筛选特定范围内数据...实际上,这是pandas行索引访问通用策略,即模糊匹配。...当然,虽然同样是执行模糊匹配,但对于时间序列和字符串序列匹配策略还是略有不同:时间序列执行模糊匹配是"截断式",即只要当前匹配,则进行筛选保留;而字符串序列执行模糊匹配是"比较式",也就是说在执行范围查询时实际上是将各索引逐一与查询范围进行比较字符串大小...这里补充一个将时间序列索引转化为字符串格式普通索引后模糊匹配例子,可自行体会下二者区别: ?

    5.8K10

    pandas 筛选数据 8 个骚操作

    , columns=boston.feature_names) 1. [] 第一种是最快捷方便,直接在dataframe[]写筛选条件或者组合条件。...除了可以像[]按条件筛选数据以外,loc还可以指定返回列变量,从行和列两个维度筛选。 比如下面这个例子,按条件筛选出数据,并筛选出指定变量,然后赋值。...pandas里实现字符串模糊筛选,可以用.str.contains()来实现,有点像在SQL语句里用是like。...下面利用titanic数据举例,筛选出人名包含Mrs或者Lily数据,|或逻辑符号在引号内。...pandaswhere也是筛选,但用法稍有不同。 where接受条件需要是布尔类型,如果不满足匹配条件,就被赋值为默认NaN或其他指定值。

    28910

    pandas中使用excel模糊匹配通配符,真香

    前言 在 pandas ,实现如下模糊匹配统计,要怎么做? 简单: 因为在 pandas 可以把筛选和统计两种逻辑分开编写,所以代码清晰好用。...问题在于pandas 要实现模糊匹配,只能使用正则表达式或某种具体函数。...表示1个任意字符,星号 * 表示任意个数(0、1、或n)字符 对比来看,这可以直接在字符串中表达出 pandas startswith , endswith , contains 这种直接在字符串中表达模糊匹配规则...难道在 pandas 无法做到? ---- 正则表达式特殊字符 要在字符串中表达匹配规则,用正则表达式是最好选择。其实思路挺简单,不就是直接把表达字符串符合替换成正则表达式相对于符号吗?...只要设计好这两个步骤执行顺序,应该就可以顺利解决问题。

    1.7K20

    pandas 筛选数据 8 个骚操作

    , columns=boston.feature_names) 1. [] 第一种是最快捷方便,直接在dataframe[]写筛选条件或者组合条件。...除了可以像[]按条件筛选数据以外,loc还可以指定返回列变量,从行和列两个维度筛选。 比如下面这个例子,按条件筛选出数据,并筛选出指定变量,然后赋值。...pandas里实现字符串模糊筛选,可以用.str.contains()来实现,有点像在SQL语句里用是like。...下面利用titanic数据举例,筛选出人名包含Mrs或者Lily数据,|或逻辑符号在引号内。...pandaswhere也是筛选,但用法稍有不同。 where接受条件需要是布尔类型,如果不满足匹配条件,就被赋值为默认NaN或其他指定值。

    3.5K30

    更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    load_ram_delta_mb:数据加载过程中最大内存消耗增长 注意,当我们使用有效压缩二进制数据格式(例如Parquet)时,最后两个指标变得非常重要。...同时使用两种方法进行对比: 1.将生成分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...2.对特征进行转换 在上一节,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用pandas.Categorical类型再次进行比较。 ?...可以看到feather和pickle拥有最快I/O速度,接下来该比较数据加载过程内存消耗了。下面的条形图显示了我们之前提到有关parquet格式情况 ? 为什么parquet内存消耗这么高?...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据。即使文件在持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

    2.9K21

    更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    load_ram_delta_mb:数据加载过程中最大内存消耗增长 注意,当我们使用有效压缩二进制数据格式(例如Parquet)时,最后两个指标变得非常重要。...同时使用两种方法进行对比: 1.将生成分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...2.对特征进行转换 在上一节,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用pandas.Categorical类型再次进行比较。 ?...可以看到feather和pickle拥有最快I/O速度,接下来该比较数据加载过程内存消耗了。下面的条形图显示了我们之前提到有关parquet格式情况 ? 为什么parquet内存消耗这么高?...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据。即使文件在持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

    2.4K30

    打造高效物联网数据处理:Elasticsearch六种按位匹配方法

    布尔编码优点布尔编码方法具有“术语编码”方法所有优点,并且一些人可能会发现这种方法更直观。对于某些数据集,这种方法可能还需要稍少存储空间,因为每个字段只存储单个布尔值,而不是字符串。...精确匹配整数编码优点在讨论几种方法,这种方法最有可能直接映射到源系统存储数据方式,源系统通常将二进制序列表示为整数。因此,使用这种方法存储文档可能比其他方法需要更少预处理。...额外优点是可以匹配特定位。脚本化按位匹配整数编码缺点这种按位匹配方法没有利用 Elasticsearch 构建的确保快速高效查询数据结构。...因此,这种方法可能导致查询速度较慢,需要比前面提到方法更多资源。出于这个原因,我通常推荐前面讨论方法。设置和索引文档在本节,我们将使用在第二节填充名为“精确匹配整数编码”相同索引。...使用 ESQL 进行按位匹配整数编码缺点尽管这种方法利用了 ESQL,但它无法直接使用预构建数据结构进行按位匹配。因此,这种方法可能导致查询速度较慢,需要比许多其他方法更多资源。

    8321

    Pandas 秘籍:1~5

    一、Pandas 基础 在本章,我们将介绍以下内容: 剖析数据结构 访问主要数据组件 了解数据类型 选择单列数据作为序列 调用序列方法 与运算符一起使用序列 将序列方法链接在一起 使索引有意义...我们通过观察count方法结果与size属性不匹配,确定该序列缺少值。...许多秘籍将与第 1 章,“Pandas 基础”内容类似,这些内容主要涵盖序列操作。 选择数据多个列 选择单个列是通过将所需列名作为字符串传递给数据索引运算符来完成。...转换数据操作方向 许多数据方法都有一个axis参数。 这个重要参数控制操作方向。 轴参数只能是两个值之一(0 或 1),并且分别作为字符串index和column别名。...Pandas 通过数据query方法具有替代基于字符串语法,该语法可提供更高清晰度。 数据query方法是实验性,不具备布尔索引功能,因此不应用于生产代码。

    37.5K10

    Pandas 秘籍:6~11

    由于两个数据索引相同,因此可以像第 7 步那样将一个数据值分配给另一列新列。 更多 从步骤 2 开始,完成此秘籍另一种方法是直接从sex_age列中分配新列,而无需使用split方法。...在此秘籍,仅连接了两个数据,但是任何数量 Pandas 对象都可以工作。 当我们垂直连接时,数据通过其列名称对齐。...您可以使用两个主要参数来指定表match和attrs。 提供给match字符串用于查找表实际文本精确匹配。 这是将显示在网页本身上文本。...要使用concat方法复制此内容,您需要将该项放置并存储列到两个数据索引。...此步骤其余部分将构建一个函数,以在 Jupyter 笔记本同一行输出显示多个数据。 所有数据都有一个to_html方法,该方法返回表原始 HTML 字符串表示形式。

    34K10

    NLP教程:用Fuzzywuzzy进行字符串模糊匹配

    在计算机科学字符串模糊匹配( fuzzy string matching)是一种近似地(而不是精确地)查找与模式匹配字符串技术。...换句话说,字符串模糊匹配是一种搜索,即使用户拼错单词或只输入部分单词进行搜索,也能够找到匹配项。因此,它也被称为字符串近似匹配。...这篇文章将解释字符串模糊匹配及其用例,并使用PythonFuzzywuzzy库给出示例。 每个酒店都有自己命名方法来命名它房间,在线旅行社(OTA)也是如此。...换句话说,我们使用Fuzzywuzzy来匹配两个数据源之间记录。...有几种方法可以比较Fuzzywuzzy两个字符串,让我们一个一个地进行尝试。 ratio ,按顺序比较整个字符串相似度。

    5.2K30
    领券