首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Parquet

Parquet是可用于Hadoop生态系统中任何项目的开源文件格式。与基于行的文件(例如CSV或TSV文件)相比,Apache Parquet旨在提供高效且高性能的扁平列式数据存储格式。...Parquet使用记录粉碎和组装算法,该算法优于嵌套名称空间的简单拼合。Parquet经过优化,可以批量处理复杂的数据,并采用不同的方式进行有效的数据压缩和编码类型。...Parquet只能读取所需的列,因此大大减少了IO。 以列格式存储数据的优点: 与CSV等基于行的文件相比,像Apache Parquet这样的列式存储旨在提高效率。...Apache Parquet是从头开始构建的。因此,它能够支持高级嵌套数据结构。Parquet数据文件的布局已针对处理大量数据的查询进行了优化,每个文件的千兆字节范围内。...Parquet帮助其用户将大型数据集的存储需求减少了至少三分之一,此外,它大大缩短了扫描和反序列化时间,从而降低了总体成本。 下表比较了通过将数据从CSV转换为Parquet所节省的成本以及提速。

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark Parquet详解

    Spark - Parquet 概述 Apache Parquet属于Hadoop生态圈的一种新型列式存储格式,既然属于Hadoop生态圈,因此也兼容大多圈内计算框架(Hadoop、Spark),另外Parquet...可以看到图中分为左右两部分: 左边: 最外层表示一个Parquet文件; 首先是Magic Number,用于校验Parquet文件,并且也可以用于表示文件开始和结束位; 一个File对应多个Row...Pandas: import pandas as pd pd.read_parquet('parquet_file_path', engine='pyarrow') 上述代码需要注意的是要单独安装pyarrow...但是我这里试过fastparquet加载我的parquet文件会失败,我的parquet是spark上直接导出的,不知道是不是两个库对parquet支持上有差异还是因为啥,pyarrow就可以。。。。...('parquet_file_path') # 默认读取的是hdfs的file pyspark就直接读取就好,毕竟都是一家人。。。。

    1.7K43

    【python】pyarrow.parquet+pandas:读取及使用parquet文件

    所需的库 import pyarrow.parquet as pq import pandas as pd pyarrow.parquet模块,可以读取和写入Parquet文件,以及进行一系列与Parquet...  当使用pyarrow.parquet模块时,通常的操作包括读取和写入Parquet文件,以及对Parquet文件中的数据进行操作和转换。...读取Parquet文件 import pyarrow.parquet as pq parquet_file = pq.ParquetFile('file.parquet') data = parquet_file.read...对数据进行操作 import pyarrow.parquet as pq # 读取Parquet文件 parquet_file = pq.ParquetFile('output.parquet') data...迭代方式来处理Parquet文件   如果Parquet文件非常大,可能会占用大量的内存。在处理大型数据时,建议使用迭代的方式来处理Parquet文件,以减少内存的占用。

    34310

    Parquet文件结构笔记

    Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目,那么这里就总结下Parquet数据结构到底是什么样的呢...一个Parquet文件是由一个header以及一个或多个block块组成,以一个footer结尾。header中只包含一个4个字节的数字PAR1用来识别整个Parquet文件格式。...读取一个Parquet文件时,需要完全读取Footer的meatadata,Parquet格式文件不需要读取sync markers这样的标记分割查找,因为所有block的边界都存储于footer的metadata...每个page就包含了来自于相同列的值.Parquet同时使用更紧凑形式的编码,当写入Parquet文件时,它会自动基于column的类型适配一个合适的编码,比如,一个boolean形式的值将会被用于run-length...另一方面,Parquet文件对于每个page支持标准的压缩算法比如支持Snappy,gzip以及LZO压缩格式,也支持不压缩。 Parquet格式的数据类型: ?

    89620

    Pyspark读取parquet数据过程解析

    parquet数据:列式存储结构,由Twitter和Cloudera合作开发,相比于行式存储,其特点是: 可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量;压缩编码可以降低磁盘存储空间,使用更高效的压缩编码节约存储空间...那么我们怎么在pyspark中读取和使用parquet数据呢?我以local模式,linux下的pycharm执行作说明。...os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" #多个python版本时需要指定 conf = SparkConf().setAppName('test_parquet...spark进行读取,得到DataFrame格式的数据:host:port 属于主机和端口号 parquetFile = r”hdfs://host:port/Felix_test/test_data.parquet...” df = spark.read.parquet(parquetFile) 而,DataFrame格式数据有一些方法可以使用,例如: 1.df.first() :显示第一条数据,Row格式 print

    2.3K20

    SparkSQL与Hive metastore Parquet转换

    Spark SQL为了更好的性能,在读写Hive metastore parquet格式的表时,会默认使用自己的Parquet SerDe,而不是采用Hive的SerDe进行序列化和反序列化。...这里从表schema的处理角度而言,就必须注意Hive和Parquet兼容性,主要有两个区别: 1.Hive是大小写敏感的,但Parquet相反 2.Hive会将所有列视为nullable,但是nullability...在parquet里有独特的意义 由于上面的原因,在将Hive metastore parquet转化为Spark SQL parquet时,需要兼容处理一下Hive和Parquet的schema,即需要对二者的结构进行一致化...),Spark SQL在处理Parquet表时,同样为了更好的性能,会缓存Parquet的元数据信息。...设置为false时,会使用parquet的新版格式。例如,decimals会以int-based格式写出。

    1.7K10

    Parquet文件存储格式详细解析

    猜你想要的: Hive - ORC 文件存储格式详细解析 一、Parquet的组成 Parquet仅仅是一种存储格式,它是语言、平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet...项目由以下几个子项目组成: parquet-format项目由java实现,它定义了所有Parquet元数据对象,Parquet的元数据是使用Apache Thrift进行序列化并存储在Parquet文件的尾部...数据存储层定义了Parquet的文件格式,其中元数据在parquet-format中定义,包括Parquet原始类型定义、Page类型、编码类型、压缩类型等等。...并且为了帮助大家理解和使用,Parquet提供了org.apache.parquet.example包实现了java对象和Parquet文件的转换。...Parquet文件格式 Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。

    5.5K41

    列式存储引擎-内核机制-Parquet格式

    列式存储引擎-内核机制-Parquet格式 Parquet是一种开源的列式存储结构,广泛应用于大数据领域。 1、数据模型和schema Parquet继承了Protocol Buffer的数据模型。...1、行组,Row Group:Parquet 在水平方向上将数据划分为行组,默认行组大小与 HDFS Block 块大小对齐,Parquet 保证一个行组会被一个 Mapper 处理。...3、页,Page:Parquet 是页存储方式,每一个列块包含多个页,一个页是最小的编码的单位,同一列块的不同页可以使用不同的编码方式。...5、参考 https://www.waitingforcode.com/apache-parquet/encodings-apache-parquet/read https://github.com/apache.../parquet-format https://github.com/apache/parquet-format/blob/master/Encodings.md

    61530

    深入分析 Parquet 列式存储格式

    Parquet 适配多种计算框架 Parquet 是语言无关的,而且不与任何一种数据处理框架绑定在一起,适配多种语言和组件,能够与 Parquet 配合的组件有: 查询引擎: Hive, Impala,...数据从内存到 Parquet 文件或者反过来的过程主要由以下三个部分组成: 1, 存储格式 (storage format) parquet-format 项目定义了 Parquet 内部的数据类型、存储格式等...例如 parquet-mr 项目里的 parquet-pig 项目就是负责把内存中的 Pig Tuple 序列化并按列存储成 Parquet 格式,以及反过来把 Parquet 文件的数据反序列化成 Pig...图 2 Parquet 项目的结构 Parquet 数据模型 理解 Parquet 首先要理解这个列存储格式的数据模型。我们以一个下面这样的 schema 和数据为例来说明这个问题。...Spark 已经将 Parquet 设为默认的文件存储格式,Cloudera 投入了很多工程师到 Impala+Parquet 相关开发中,Hive/Pig 都原生支持 Parquet

    1.5K40
    领券