offset); } float CriticalSpringCalculator::Offset(float time) { return (c1_ + c2_ * time) * std::powf...c1_ = offset - c2_; } float OverdampedSpringCalculator::Offset(float time) { return c1_ * std::powf...(number::e, r1_ * time) + c2_ * std::powf(number::e, r2_ * time); } float OverdampedSpringCalculator...::Velocity(float time) { return c1_ * r1_ * std::powf(number::e, r1_ * time) + c2_ * r2_ *...sinf(w_ * time)); } float UnderdampedSpringCalculator::Velocity(float time) { float power = std::powf
..100 { let t = (n as f64) * 2_f64.log10(); let m = t - t.floor() + 1.0; let m = 10_f64.powf..... { let t = (n as f64) * 2_f64.log10(); let m = t - t.floor() + 2.0; let head = 10_f64.powf
还是通过man手册或者网上查询 NAME pow, powf, powl - power functions SYNOPSIS #include ...double pow(double x, double y); float powf(float x, float y); long double powl(long double
; // 公式2 I = (powf...Table[Y * 256 + X] = IM_ClampToByte(255 * powf(I, powf((Y + 1.0f) / (X + 1.0f), P)) + 0.5f); //...第一个可优化的地方是2维查找表的建立过程,开始以为只有65536个元素的计算,所以查找表顺序是没有怎么仔细考虑的,但是实测,这一块占用的时间还是蛮可观的,有好几毫秒,主要是因为这里的powf是个很耗时的过程...(I, 0.75f * Z + 0.25f) + (1 - I) * 0.5f * (1 - Z) + powf(I, 2 - Z)) * 0.5f; // 公式3...++) // X表示的是I的卷积值 { Table[Y * 256 + X] = IM_ClampToByte(255 * powf
8); for (int pix = 0; pix < 256; ++pix) { pLocalLut[pix] = ClampToByte(255.0f * powf...(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f))); } } InvertGrayscale(Input, Output...8); for (int pix = 0; pix < 256; ++pix) { pLocalLut[pix] = ClampToByte(255.0f * powf...(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f))); } } InvertGrayscale(Input, Output
(env, b, field_x); jfloat by = (*env)->GetFloatField(env, b, field_y); //步骤4 return sqrtf(powf...(bx-ax, 2) + powf(by-ay, 2)); } 然后在Java里面调用: public class Main extends Activity { @Override
log (double); 以e为底的对数 double log10 (double);以10为底的对数 double pow(double x,double y);计算x的y次幂 float powf
using ::modff; //将双精度数value分解成尾数和阶 using ::modfl; //将双精度数value分解成尾数和阶 using ::pow; //计算幂 using ::powf
-log(p) const Dtype pk = prob_data[i * dim + label_value * inner_num_ + j]; loss -= alpha_ * powf...per_channel bottom_diff[i * dim + label_value * inner_num_ + j] = Dtype (-1 * alpha_ * (-1 * gamma_ * powf...(1 - pk, gamma_) * pk * log(pk) + powf(1 - pk, gamma_ + 1))); // j = k c++; for ( ; c < num_channel...prob_data[n * dim + label_value * spatial_dim + s], Dtype(FLT_MIN)); loss[index] = -1 * alpha_ * powf
col, CV_32FC1); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { float gamma = powf...(0.5, (average - F.at(i, j)) / average); out.at(i, j) = powf(V.at(i, j), gamma
- self.redView.center.x; CGFloat offsetY = loc.y - self.redView.center.y; CGFloat distance = sqrtf(powf...(offsetX, 2.0) + powf(offsetY, 2.0)); //powf 函数为浮点型的参数1的参数2次方 6.推动方向,CGVector 矢量 @property (readwrite
; // 公式2 I = (powf...(I, 0.75f * Z + 0.25f) + (1 - I) * 0.4f * (1 - Z) + powf(I, 2 - Z)) * 0.5f; // 公式3...Table[Y * 256 + X] = IM_ClampToByte(255 * powf(I, powf((Y + 1.0f) / (X + 1.0f), P)) + 0.5f); //...第一个可优化的地方是2维查找表的建立过程,开始以为只有65536个元素的计算,所以查找表顺序是没有怎么仔细考虑的,但是实测,这一块占用的时间还是蛮可观的,有好几毫秒,主要是因为这里的powf是个很耗时的过程
(double); 以e为底的对数 double log10 (double);以10为底的对数 double pow(double x,double y);计算x的y次幂 float powf
truncf() acosf() asinf() atanf() atan2f() ceilf() cosf() expf() fabsf() floorf() fmodf() logf() log10f() powf
int16 s=0; float fal_output=0; s=(Sign_ADRC(e+zeta)-Sign_ADRC(e-zeta))/2; fal_output=e*s/(powf...(zeta,1-alpha))+powf(ABS(e),alpha)*Sign_ADRC(e)*(1-s); return fal_output; } /************扩张状态观测器
目前支持:powf, exp, log10, log2, log, ln, trunc, fract, copysign,了解更多请查看:https://crates.io/crates/micromath
sign as f32); // let exponent = (exponent as i32) - BIAS; // let exponent = RADIX.powf...= 0 { // mantissa += 2_f32.powf((i as f32) - 23.0); // } } (signed...计算-1^0 的正确方法是使用圆括号告诉编译器-1 是整体: (-1.0_f32).powf(0.0) 而不是这样使用: -1.0_f32.powf(0.0) 这样编译器将会解析为-(1^0)。...} } } impl From for f64 { // fn from(n: Q7) -> f64 { (n.0 as f64) * 2f64.powf...} } } impl From for f64 { fn from(n: Q7) -> f64 { (n.0 as f64) * 2f64.powf
//最小分贝的波形幅度值 公式: db 分贝 A 波形幅度值 dB=20∗log(A)→A=pow(10,(db/20.0)) let minAmp = powf...inverseAmpRange = 1.0 / (1.0 - minAmp); //实时获取到波形幅度值 公式同上 let amp = powf...应该计算的一个比例值吧 let adjAmp = (amp - minAmp) * inverseAmpRange; level = powf
double); 以e为底的对数 double log10 (double);以10为底的对数 double pow(double x, double y);计算以x为底数的y次幂 float powf
float result = 0,fabsf_e = 0; fabsf_e = fabsf(e); if(delta>=fabsf_e) result = e/powf...(delta,1.0-alpha); else //if(delta<fabsf_e) result = powf(fabsf_e,alpha)*sign(e); return result
领取专属 10元无门槛券
手把手带您无忧上云