首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学习计量经济学的学生需要学习编程吗?如果需要,要学习到什么程度,有什么好的建议吗?

    强烈建议学习python r和mathlab stata的功能 python都可以实现 当然因为不专精 肯定没有专精的好用 那为什么还要学习python呢 1.python是有益的补充 比如数据的抓取 清洗 整理 排序等等 可以用python来轻松实现 2.python可以帮助深入学习和理解 虽然r mathlab stata在各自领域做的很好 但正是因为太好了 容易使人只知道实现 不知道如何实现 python只提供了基础工具 尝试用它实现模型 完成分析 可以更深入理解原理和过程 3.python可以给你另外看问题的角度 强烈建议学习python的多线程 多进程 协程方式编程 这些属于略高端的内容 学习曲线比较陡 但是一旦学会 好处多多 首先 你思考问题或者构建模型的时候 会多一个分布的理解和视角 思考如何将任务平行拆解 可能找到更合理更高效的解法或者设计方案 可以说 比不理解分布概念的思路 完全高出一个层次 另外 分布式设计会带来处理效率的大大提升 越巨大的数据集 越复杂的模型 差异愈发明显 为什么建议python而不是其它开发语言呢 那是因为 1.python教材和学习资料齐全丰富 入门容易 2.python是语义化的风格 十分适合理解和分享 要知道思路模糊混乱 语法潦草凌乱的代码 过个十天八天 就算自己写的 看起来都费劲 而python良好的语法和规范 最大程度避免了这个问题 3.python跨平台 win linux osx各大操作系统都适用 一次编写 到处运行 4.python第三方组件包十分丰富 且大部分免费开源 完全可以借用开源巨人的力量 有可能还可以回馈开源 提交自己的贡献

    04

    工人规范操作识别检测 yolov5

    工人规范操作识别检测通过yolov5+python网络模型技术,工人规范操作识别检测对工人的操作进行实时监测,当工人规范操作识别系统检测到工人操作不符合规范时,将自动发出警报提示相关人员采取措施。行为检测合规算法中应用到的YOLOv5中在训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。

    02

    让Python猜猜你是否能约会成功

    我是一个婚恋网站的数据分析师,新入职的第二天,接到老板的任务,让我预测来婚恋网站新注册的男生&女生是否会约会成功。 如何预测一个新来的男生是否会约会成功呢?这很简单,只需要调出一下数据库中之前注册网站的会员信息及跟踪情况,看看和这个新来的男生条件最接近的男生是否约会成功了,那么就可以大致预估新来的男生是否会约会成功。中国有句老话叫做“近朱者赤,近墨者黑”,正是这个道理。比如下图,假设我们将男生的条件划分为三个维度,颜值、背景和收入。蓝色点代表约会成功,灰色点代表未约会成功。红色点代表新来的男生,他和两个蓝色

    06

    提供一个10分钟跑通 AI Challenger 细粒度用户评论情感分析的fastText Baseline

    上一篇《AI Challenger 2018 进行时》文尾我们提到 AI Challenger 官方已经在 GitHub 上提供了多个赛道的 Baseline: AI Challenger 2018 Baseline,其中文本挖掘相关的3个主赛道均有提供,非常适合用来学习:英中文本机器翻译的 baseline 就直接用了Google官方基于Tensorflow实现的Tensor2Tensor跑神经网络机器翻译Transformer模型,这个思路是我在去年《AI Challenger 2017 奇遇记》里的终极方案,今年已成标配;细粒度用户评论情感分析提供了一个基于支持向量机(SVM)的多分类模型 baseline;观点型问题阅读理解提供一个深度学习模型 baseline , 基于pytorch实现论文《Multiway Attention Networks for Modeling Sentence Pairs》里的思路。

    00
    领券