选文|Aileen 翻译|王昱森 校对|寒小阳 大数据文摘编辑作品 转载具体要求见文末 导语 我经常被问到诸如如何从深度学习模型中得到更好的效果的问题,类似的问题还有: 我如何提升准确度 如果我的神经网络模型性能不佳,我能够做什么? 对于这些问题,我经常这样回答,“我并不知道确切的答案,但是我有很多思路”,接着我会列出了我所能想到的所有或许能够给性能带来提升的思路。 为避免一次次罗列出这样一个简单的列表,我决定把所有想法详细写在这篇博客里。 这些思路应该是通用的,不仅能在深度学习领域帮助你,还能
前几天在Python白银群【kim】问了一个Python机器学习的问题,这里拿出来给大家分享下。
使用Python进行栅格数据处理,很多时候,我们会将GDAL的Dataset对象转化为NumPy的ndarray对象,这样我们可以使用很多通用的Python库对数据进行处理,然后再借助GDAL库将数据写回到文件。
使用没有 batchnorm 的 ELU 非线性或者有 batchnorm 的 ReLU。
来源:Charlotte数据挖掘、深度学习爱好者本文约11000字,建议阅读15+分钟本文详细对比了各种超参数对CNN模型性能的影响。 针对CNN优化的总结 Systematic evaluation of CNN advances on the ImageNet 使用没有 batchnorm 的 ELU 非线性或者有 batchnorm 的 ReLU。 用类似1*1的网络结构预训练RGB数据,能得到更好的效果。 使用线性学习率衰退策略。 使用平均和最大池化层的和。 使用大约 128(0.005) 到 2
参加这次比赛的初衷是作为机器学习课程的大作业,这两天写了课程报告,所以将报告内容修改了一下进行分享。 我所在的团队(“中国国家跳水队”,排名如队名,一度严重跳水)获得了初赛第3, 复赛第9, 决赛第6的成绩,正好擦边获得了三等奖。(小编:比赛的时候取个好名字有多重要:) 主要分为三个部分,分别为比赛背景介绍,团队主要方案介绍,其他方案介绍。其中最后一部分包含了一些其他队伍在决赛赛后分享时提到的思路。 比赛背景介绍 此部分主要内容摘自比赛官网,详细内容见比赛官网 https://biendata.com/co
前几天在Python最强王者交流群【FiNε_】问了一个Python自动化办公,问题如下:python 读取一个文件里面几百个csv数据集 然后按照列名合并一个数据集。
学习 zhenguo 老师的 Python 课已经一个星期了,自己感觉已经学有小成,刚好昨天老师在接单群里发了一个 100元的单子,我毫不犹豫的接了,不仅可以检验自己能否学以致用,还能赚顿小龙虾的钱(50元~)。 开发需求 这个单子的要求,是使用 Python 中的 matplotlib 库绘制动态的折线图,需求描述虽然很简单易懂,但是也要好好分析一下。 Matplotlib库 这个库也算是 Python 数据开发必学的库之一了,它主要的功能就是绘制图表,而且实现也非常简单,几行代码就可以绘制出直方图、折线
强烈建议学习python r和mathlab stata的功能 python都可以实现 当然因为不专精 肯定没有专精的好用 那为什么还要学习python呢 1.python是有益的补充 比如数据的抓取 清洗 整理 排序等等 可以用python来轻松实现 2.python可以帮助深入学习和理解 虽然r mathlab stata在各自领域做的很好 但正是因为太好了 容易使人只知道实现 不知道如何实现 python只提供了基础工具 尝试用它实现模型 完成分析 可以更深入理解原理和过程 3.python可以给你另外看问题的角度 强烈建议学习python的多线程 多进程 协程方式编程 这些属于略高端的内容 学习曲线比较陡 但是一旦学会 好处多多 首先 你思考问题或者构建模型的时候 会多一个分布的理解和视角 思考如何将任务平行拆解 可能找到更合理更高效的解法或者设计方案 可以说 比不理解分布概念的思路 完全高出一个层次 另外 分布式设计会带来处理效率的大大提升 越巨大的数据集 越复杂的模型 差异愈发明显 为什么建议python而不是其它开发语言呢 那是因为 1.python教材和学习资料齐全丰富 入门容易 2.python是语义化的风格 十分适合理解和分享 要知道思路模糊混乱 语法潦草凌乱的代码 过个十天八天 就算自己写的 看起来都费劲 而python良好的语法和规范 最大程度避免了这个问题 3.python跨平台 win linux osx各大操作系统都适用 一次编写 到处运行 4.python第三方组件包十分丰富 且大部分免费开源 完全可以借用开源巨人的力量 有可能还可以回馈开源 提交自己的贡献
据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感。
这是一个重要的话题,因为我们将在pandas中大量使用这些技术。Python列表索引和切片是指如何从列表或类似数组的对象中选择和筛选数据。这里讨论的技术也适用于元组。
上次写了一篇文章介绍CVPR 2019最新提交的工业缺陷检测新思路基于图像语义分割网络实现缺陷检测,当时我们的一位读者看到非常感兴趣,关键是还很厉害,直接实现了论文中提到缺陷检测网络,基于tensorflow+slim框架复现了基于KolektorSDD数据集的检测效果,先看一下测试运行效果:
数据集是由200个节点构成的关联图,可以类比理解为200个人的社区,每一个人都有自身的关系连接(称之为邻居节点)
应届生硕士:科班出身的话 应届 大厂 月薪2w 一般 15薪; 中级工程师:工作2-3年 2~3w是常态 高级算法工程师:3~5w 工作5年以上 经验丰富 对应的文档能力要强 资深算法工程师:5w-10w 一般都是部门领导
在上一篇文章《图像检索系列——利用 Python 检测图像相似度》中,我们介绍了一个在图像检索领域非常常用的算法——感知哈希算法。这是一个很简单且快速的算法,其原理在于针对每一张图片都生成一个特定的“指纹”,然后采取一种相似度的度量方式得出两张图片的近似程度。
Olivier Grisel(OG)本人在InriaParietal工作,主要研发scikit-learn,使用Python语言编写的最流行的机器学习库之一。OG是机器学习、文本挖掘和自然语言处理领域的专家。大概在几周前,我们的Florian Douetteau (FD)对OG进行了一次访谈,很幸运,我得到这个机会去旁听。 在上一篇博文里(CSDN[注]译文:[访谈] Olivier Grisel谈scikit-learn和机器学习技术的未来),我记录了谈话的内容,他们主要探讨了scikit-learn和
不造锤子; 不论是FME还是Python,又或者是SQL。这些工具都很好用,在进行数据处理的时候,应当思考如何合理的使用他们。通过工具的组合,绝大多数问题都能得到解决。就像使用生活中的工具,单纯的使用一把锤子,是造不出汽车的。为了造出复杂的机械,需要的是合理的使用工具,在这过程中,可能需要使用到一些比锤子更加高级的机械等一系列工具。如果目的是造汽车,那么这些高级工具是怎么造出来的,就不是最该关注的点。造汽车的人,只需要使用好这些工具就好了。 不造锤子,并不意味着思想上的懈怠。相反的,不造锤子意味着作为一个数
Olivier Grisel(OG)本人在InriaParietal工作,主要研发scikit-learn,使用Python语言编写的最流行的机器学习库之一。OG是机器学习、文本挖掘和自然语言处理领域的专家。大概在几周前,我们的Florian Douetteau (FD)对OG进行了一次访谈,很幸运,我得到这个机会去旁听。 在上一篇博文里(CSDN译文:[访谈] Olivier Grisel谈scikit-learn和机器学习技术的未来),我记录了谈话的内容,他们主要探讨了scikit-learn和MLli
本文由CSDN授权转载 http://www.csdn.net 作者|Alivia 摘要:几周前,作者写了一篇关于旁听Florian Douetteau(FD)采访Olivier Grisel的博文。此篇是采访的第二部分,主要讨论初级数据科学家可以使用的一些技巧和诀窍。 Olivier Grisel(OG)本人在InriaParietal工作,主要研发scikit-learn,使用Python语言编写的最流行的机器学习库之一。OG是机器学习、文本挖掘和自然语言处理领域的专家。大概在几周前,我们的Floria
经常向我提问的同学应该知道,我一般不会直接给出代码,而是给你提供思路。本系列主打思路,基于同一思路,给出多种不同的解决方案,让你举一反三解决问题。
Python 是一种胶水语言,可以粘很多家伙,例如:Python + 网站开发、Python + 自动化测试、Python + 自动化运维、Python + AI、Python + 数据分析 ... ...
给定一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
克服过拟合和提高泛化能力的20条技巧和诀窍 你是如何提升深度学习模型的效果? 这是我经常被问到的一个问题。 有时候也会换一种问法: 我该如何提高模型的准确率呢? ……或者反过来问: 如果我
Stock [1]- 终端实时获取股票价格,实时查询股票价格,默认查询了沪指、深指。需要安装requests库,通过调用新浪股票API,实时查询股票价格,支持查询多支股票,通过threading多线程
工人规范操作识别检测通过yolov5+python网络模型技术,工人规范操作识别检测对工人的操作进行实时监测,当工人规范操作识别系统检测到工人操作不符合规范时,将自动发出警报提示相关人员采取措施。行为检测合规算法中应用到的YOLOv5中在训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。
通过学习,你将能够掌握基于Python语言和工具库如何完成一个简要的数据分析任务,轻松做出交互式动态数据分析内容,用数据分析评价数据。
举个例子。针对腾讯视频考虑顺序: 1、网页端:https://v.qq.com/ 2、移动端:https://m.v.qq.com/index.html 3、客户端:通过charles设置代理抓取 4、App
练习写作是我们学习知识有效的一种方式,通过写作可以检验你对知识点的掌握,是一种对自己内心世界的推演,因此你也会得到一些结论。而这些结论正是你身体力行、复盘总结、升华提炼后的结果。你把文字写出来的时候,也许你会想,又或者会有告诉你,某本书上早写了这些。于是你可能会茫然,想着既然书上早就写了,那我折腾的意义在哪里?
在我们舆情分析系统里,有一个功能是文章搜索,返回相似性去重后的文章,这里比较耗时的是一个相似性去重的功能,就是在返回的数据集里将相似的文章去掉。
会写python不难,写好却需要下一番功夫,上篇文章写了for循环的简单优化方法,原本想一鼓作气,梳理一下for循环优化的高级方法,但是梳理过程中发现for循环优化需要比较多的python基础知识,如果了解不透彻很难达到优化的效果,因此,笔者想用几个短篇先介绍一下python的常用包和方法,方便后续优化使用。
我是一个婚恋网站的数据分析师,新入职的第二天,接到老板的任务,让我预测来婚恋网站新注册的男生&女生是否会约会成功。 如何预测一个新来的男生是否会约会成功呢?这很简单,只需要调出一下数据库中之前注册网站的会员信息及跟踪情况,看看和这个新来的男生条件最接近的男生是否约会成功了,那么就可以大致预估新来的男生是否会约会成功。中国有句老话叫做“近朱者赤,近墨者黑”,正是这个道理。比如下图,假设我们将男生的条件划分为三个维度,颜值、背景和收入。蓝色点代表约会成功,灰色点代表未约会成功。红色点代表新来的男生,他和两个蓝色
说起热门的B站相信很多喜欢玩动漫的,看最有创意的Up主的同学一定非常熟悉。我突发奇想学Python这么久了,为啥不用Python爬取B站中我关注的人,已经关注的人他们关注的人,看看全站里面热门的UP主都是是哪些。
【导语】数据结构与算法是所有人都要学习的基础课程,自己写算法的过程可以帮助我们更好地理解算法思路,不要轻视每一个算法,一些虽然看似容易,但可能有很多坑。但是坑还是要自己一个一个踩过来的,而且也只有自己踩过坑,才能让自己从理论到技能都得到提升。为了帮助大家在这个假期能提高学习效率,进阶 Python 技能,营长为大家推荐了一份用 Python代码实现算法的资源帖,涵盖从入门到高级的各类算法。
前几天我看到了一则IT圈的新闻:Anaconda推出PyScript:在 HTML 嵌入Python代码
思路是先构建VOC2007格式的猪脸数据集,在转换成tf格式,然后利用tf的objectdetectionapi进行训练。原因是把2种构建方式都熟悉一遍,并把所有流程过一遍。
概述 本文主要介绍基于Python3进行接口测试时,应该掌握Python3哪些基本的能力,主要从以下几个方面进行说明。 Python3基本语法 Python3http库urllib/requests/locus Python3各类格式解析 unittest测试框架 其他一些能力,例如算法、数据结构等等 这里大致说明一下,后续各专题专门就每一类能力进行分享。 Python3基本语法 对于Python3的入门学习和掌握,请参见我前期所发布的《快学Python3》系列,有30多
前几天在Python钻石群【一级大头虾选手】问了一个Python处理的问题,这里拿出来给大家分享下。
7. 给一个数组,求最大子区间的和,剑指offer原题,大概思路就是当前和小于0,就把下个数直接当成当前和,大于0,就累加比较大小
之前使用django+mysql建立的一个站点,发现向数据库中写入中文字符时总会报错,尝试了修改settings文件和更改数据表的字符集后仍不起作用。最后发现,在更改mysql的字符集后,需要重建数据库,才能起作用。
小编邀请您,先思考: 1 集成学习是什么? 2 如何用Python或者R实现集成学习? 1 集成学习是什么? 简单来说,集成学习是一种技术框架,其按照不同的思路来组合基础模型,从而达到其利断金的目的。 2 集成学习框架 目前,有三种常见的集成学习框架:bagging,boosting和stacking。国内,南京大学的周志华教授对集成学习有很深入的研究,其在09年发表的一篇概述性论文《Ensemble Learning》 https://cs.nju.edu.cn/zhouzh/zhouzh.files/p
在数据库方向上相对来说能够容易推出开发规范和标准,但是你很少听到公司里面出针对开发同学的开发规范。我觉得其中的一个原因是程序猿比较执拗,以技术服人,经常彼此看不上,如果你出了10个规范,估计能让他从另外的角度给你20个建议,如果给个样例,估计他能够给你变出很多的花样来改进,说你的不够极客风,所以干脆就参考官方文档吧。
导语:今天这篇文章也是我们的志愿编辑写出来的文章哦,稳重介绍了如何在python3中实现自己的决策树算法并画出来!另外,小编Tom邀请你一起搞事情! 预备知识:信息增益,香农熵 编程使用库:numpy
上一篇《AI Challenger 2018 进行时》文尾我们提到 AI Challenger 官方已经在 GitHub 上提供了多个赛道的 Baseline: AI Challenger 2018 Baseline,其中文本挖掘相关的3个主赛道均有提供,非常适合用来学习:英中文本机器翻译的 baseline 就直接用了Google官方基于Tensorflow实现的Tensor2Tensor跑神经网络机器翻译Transformer模型,这个思路是我在去年《AI Challenger 2017 奇遇记》里的终极方案,今年已成标配;细粒度用户评论情感分析提供了一个基于支持向量机(SVM)的多分类模型 baseline;观点型问题阅读理解提供一个深度学习模型 baseline , 基于pytorch实现论文《Multiway Attention Networks for Modeling Sentence Pairs》里的思路。
领取专属 10元无门槛券
手把手带您无忧上云