首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python实现GPU加速的基本操作

    技术背景 之前写过一篇讲述如何使用pycuda来在Python上写CUDA程序的博客。...2**50,1]() File "/home/dechin/.local/lib/python3.7/site-packages/numba/cuda/compiler.py", line 822,...但是从第二次运行调用开始,就不需要重新编译,这时候GPU加速的效果就体现出来了,运行结果如下: $ python3 gpu_add.py The error between numba and numpy...总结概要 本文针对于Python中使用Numba的GPU加速程序的一些基本概念和实现的方法,比如GPU中的线程和模块的概念,以及给出了一个矢量加法的代码案例,进一步说明了GPU加速的效果。...需要注意的是,由于Python中的Numba实现是一种即时编译的技术,因此第一次运算时的时间会明显较长,所以我们一般说GPU加速是指从第二步开始的运行时间。

    3.1K30

    虚拟GPU_vmware gpu

    第三章 浅谈GPU虚拟化技术(三)GPU SRIOV及vGPU调度 GPU SRIOV原理 谈起GPU SRIOV那么这个世界上就只有两款产品:S7150和MI25。...VF调度 AMD GPU SRIOV从硬件的角度看就是一个对GPU资源的分时复用的过程。因此其运行方式也是与GPU分片虚拟化类似。SRIOV的调度信息后续重点介绍。...GPU SRIOV的调度系统 分时复用 VF的调度是GPU虚拟化中的重点,涉及到如何服务VM,和如何确保GPU资源的公平分片。 GPU SRIOV也是一个分时复用的策略。...GPU分时复用与CPU在进程间的分时复用是一样的概念。一个简单的调度就是把一个GPU的时间按照特定时间段分片,每个VM拿到特定的时间片。在这些时间片段中,这个VM享用GPU的硬件的全部资源。...而有些方案则会严格要求在特定时间片结束的时候切换,强行打断当前GPU的执行,并交予下一个时间片的所有者。这种方式确保GPU资源被平均分摊到不同VM。AMD的GPU SRIOV采用的后一种方式。

    2.9K30

    【深度学习】Python使用指定gpu运行代码

    命令行指定显卡GPU运行python脚本 在大型机构分配的服务器集群中,需要使用GPU的程序默认都会在第一张卡上进行,如果第一张卡倍别人占用或者显存不够的情况下,程序就会报错说没有显存容量,所以能够合理地利用...1、指定使用GPU0运行脚本(默认是第一张显卡, 0代表第一张显卡的id,其他的以此类推) 第一种方式: CUDA_VISIBLE_DEVICES=0 python ***.py 第二种方式:在python...2、指定使用多张显卡运行脚本 在GPU的id为0和1的两张显卡上运行***.py程序: CUDA_VISIBLE_DEVICES=0,1 python ***.py 3、在单张显卡的情况下开启多个进程运行脚本...如CUDA_VISIBLE_DEVICES=0,2 python extract_masks.py表示指定了0、2号两个gpu。...注意,序号是从0开始排的,所以如果你只有一个gpu,那么就是CUDA_VISIBLE_DEVICES=0 python extract_masks.py。

    5.2K20

    PythonGPU编程实例——近邻表计算

    技术背景 GPU加速是现代工业各种场景中非常常用的一种技术,这得益于GPU计算的高度并行化。...在Python中存在有多种GPU并行优化的解决方案,包括之前的博客中提到的cupy、pycuda和numba.cuda,都是GPU加速的标志性Python库。...因此我们可以选择numba.cuda这一解决方案,只要在Python函数前方加一个numba.cuda.jit的修饰器,就可以在Python中用最Python的编程语法,实现GPU的加速效果。...当然,这里都是CPU层面的执行和优化,执行结果如下: $ python3 cuda_neighbor_list.py [[0. 0. 0. 0.] [0. 0. 1. 0....而在Python中改造成GPU函数的方法也非常简单,只需要把函数前的修饰器改一下,去掉函数内部的for循环,就基本完成了,比如下面这个改造的近邻表计算的案例: # cuda_neighbor_list.py

    1.9K20

    使用 Elastic GPU 管理 Kubernetes GPU 资源

    但应用在 GPU 场景,还是存在以下不足: 集群 GPU 资源缺少全局视角。没有直观方式可获取集群层面 GPU 信息,比如 Pod / 容器与 GPU 卡绑定关系、已使用 GPU 卡数等。...由于 GPU 卡相对昂贵,并且某些 AI 负载吃不满单张 GPU 算力,GPU Sharing 技术应运而生。...问题二:无法支持多 GPU 后端 除分配挂载整卡的方式外,TKE qGPU、vCUDA、gpu share、GPU 池化 等 GPU 共享技术越来越被用户采用。...对 GPU 成本的关注,对 GPU 资源的整体把控,对 GPU 不同后端的精准使用,都成为了客户能用好 GPU 算力的前提条件。...,可以是一块本地 GPU 物理卡、一个 GPU 切片资源( GPU 算力 / 显存 的组合)、一个远端 GPU 设备。

    3.3K60

    【玩转 GPU】英伟达GPU架构演变

    图片一、GPU架构发展历史 1999年,英伟达发布第一代GPU架构GeForce 256,标志着GPU时代的开始。...随后,英伟达推出了Tesla、Fermi、Kepler、Maxwell、Pascal、Volta、Turing和Ampere等GPU架构,不断增强GPU的计算能力和程序性,推动GPU在图形渲染、人工智能和高性能计算等领域的应用...GPU核心的运行方式与CPU略有不同,在GPU核心中,CPU将数据和指令传送到GPU中去,GPU再将数据加载到GPU的内存中,并利用内部的流处理器执行计算任务。执行完成后,将计算结果传回CPU中。...最近几年,英伟达还在GPU中加入了张量核心和RT核心,可以支持 AI和神经网络计算等新型工作负载。可以看出,英伟达显卡在GPU应用和体系结构上不断创新,推动着整个GPU技术发展。...六、多模态构成 英伟达GPU通过流处理器、张量核心和RT核心实现了多模态设计,可以支持多种工作负载:1) 流处理器用于支持传统的图形渲染和通用GPU计算,代表了英伟达GPU的渲染和计算能力。

    9.7K50

    NVIDIA的python-GPU算法生态 ︱ RAPIDS 0.10

    Numba(2012)为Python生态提供了一个JIT编译器。该编译器还可以针对RAPIDS在我们所有库中都大量使用的GPU。...就我个人而言,这也是我最喜欢RAPIDS的地方 —— 实现了Python生态GPU的民主化,使其他人能够以前所未有的速度构建具有多种功能的高性能库。...RAPIDS团队已将ucx-py绑定重写,使其变得更简洁,并解决了跨Python-GPU库(如Numba、RAPIDS和UCX)共享内存管理方面的多个问题。...cuSpatial是一个高效C ++库,它被用于使用CUDA和cuDF的GPU加速地理空间分析。该库包含供数据科学家使用的python绑定。...凭借快速、大规模的数据可视化功能及其围绕python的设计,Datashader非常适合与GPU驱动的viz一起使用。我们的第一个版本实现了大约50倍的速度。

    2.9K31
    领券