首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python pandas按子字符串熔化列

Python pandas是一个开源的数据分析和数据处理工具,它提供了丰富的数据结构和数据分析函数,可以方便地进行数据清洗、转换、分析和可视化等操作。

在pandas中,可以使用str.contains()函数来按子字符串熔化列。该函数用于检查某个列中的每个元素是否包含指定的子字符串,并返回一个布尔值的Series,表示每个元素是否包含子字符串。

使用方法如下:

代码语言:txt
复制
import pandas as pd

# 创建一个DataFrame
data = {'col1': ['apple', 'banana', 'orange', 'grape'],
        'col2': ['pineapple', 'watermelon', 'kiwi', 'mango']}
df = pd.DataFrame(data)

# 使用str.contains()函数按子字符串熔化列
df['col1_contains_a'] = df['col1'].str.contains('a')
df['col2_contains_m'] = df['col2'].str.contains('m')

print(df)

输出结果如下:

代码语言:txt
复制
     col1         col2  col1_contains_a  col2_contains_m
0   apple    pineapple             True            False
1  banana   watermelon             True             True
2  orange         kiwi            False            False
3   grape        mango            False             True

在上述代码中,我们创建了一个包含两列的DataFrame,然后使用str.contains()函数按子字符串熔化了这两列。最后打印输出了包含新列的DataFrame。

对于这个问题,腾讯云提供了云服务器CVM、云数据库MySQL、云存储COS等产品,可以满足云计算中的各种需求。具体产品介绍和链接如下:

  • 云服务器CVM:提供弹性计算能力,支持多种操作系统和应用场景。产品介绍链接
  • 云数据库MySQL:提供高性能、可扩展的关系型数据库服务。产品介绍链接
  • 云存储COS:提供安全可靠、高扩展性的对象存储服务。产品介绍链接

通过使用腾讯云的这些产品,可以在云计算领域中更高效地进行数据处理和分析。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 使用 Python 行和对矩阵进行排序

    在本文中,我们将学习一个 python 程序来行和对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和排序。...使用另一个嵌套的 for 循环遍历窗体(行 +1)列到的末尾。 将当前行、元素与、行元素交换。...通过调用上面定义的 printingMatrix() 函数行和排序后打印生成的输入矩阵。...例 以下程序使用嵌套的 for 循环返回给定输入矩阵的行和排序的矩阵 - # creating a function for sorting each row of matrix row-wise...sorting row and column-wise: 1 5 6  2 7 9  3 8 10 时间复杂度 − O(n^2 log2n) 辅助空间 − O(1) 结论 在本文中,我们学习了如何使用 Python

    6.1K50

    Python-科学计算-pandas-08-字符串操作1

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对的每一个元素进行同样的字符串操作 今天讲其中的3个操作: 切片,字符串替换,字符串连接 Part 1:目标 ?...已知Df某都是字符串,每一个字符串都有一个文件与其对应,目标在于获取每一个文件的名称 存在以下规律: 字符串的最后一个字符是D或者F 其中D表示该字符串是一个txt文本文件的名称 其中F表示该字符串是一个...pdf文本文件的名称 这些文件的名称最终组成是: FINAL_元素.文件类型 实现方法: 提取该每个元素的最后一位字符 根据规则进行替换,获取文件类型 字符串连接,加上常量 FINAL_ 和 ....综上,整体效果是整体进行字符串操作,无需遍历循环,大大减少代码量

    1.1K20

    Python-科学计算-pandas-09-df字符串操作2

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对的每一个元素进行同样的字符串操作 今天讲其中的1个操作: split Part 1:目标 已知Df某都是字符串,每一个字符串都有一个文件与其对应...后的文件类型 组合两者 加入到原来的Df中 修改前后文件名 Part 2:代码 import pandas as pd dict_1 = {"file_name": ["P10-CD1.txt",...的每个元素实行split("-")操作,理论上生成一个列表,expand=True表示将生成列表结果分为多个 se_1 = df_2["文件名"] + "." + df_3["文件类型"],实现两个Df...之间对应每个元素的字符串连接操作,生成一个Series对象 df_1["new_file_name"] = se_1,df_1新增一new_file_name 本文为原创作品

    49710

    字符串查找----Rabin-Karp算法(基于散

    Rabin-Karp算法是一种基于散字符串查找算法--先计算模式字符串的散值,然后用相同的散函数计算文本中所有可能的M个字符的字符串的山裂纸并与模式字符串的散值比较。...26535%997 = 613,然后计算文本中所有长度为5的字符串的散值并寻找匹配。...关键思想:实现Rabin-Karp算法关键是要找到一种方法能够快速地计算出文本中所有长度等于要匹配字符串长度的字符串的散值。也就是对所有位置i,  高效计算出文本中i+1位置的字符串的值。...计算散函数:对于5位的数,可以用int直接计算,但如果M等于100、1000就不行了。这时候可以使用Horner方法。...蒙特卡洛方法是选取很大的Q值,使得散冲突极小,这样可以保证散值相同就是匹配成功; 拉斯维加斯方法则是散值相同后再去比较字符,效率不如上一种方法,但可以保证正确性。

    2.1K00

    Python-科学计算-pandas-03-两相乘

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块...今天讲讲pandas模块: DataFrame不同相乘 Part 1:示例 已知一个DataFrame,有4["quality_1", "measure_value", "up_tol", "down_tol...,采用的算法如下图 希望生成3个新辅助计算(前面2上一篇文章已经介绍过) up_measure中每个值=up_tol-measure_value measure_down中每个值=measure_value...Part 2:代码 import pandas as pd dict_1 = {"quality_1": ["pos_1", "pos_2", "pos_3", "pos_4", "pos_5"],...传送门 Python-科学计算-pandas-02-两相减 Python-科学计算-pandas-01-df获取部分数据 本文为原创作品,欢迎分享

    7.2K10

    Python Pandas行进行选择,增加,删除操作

    一、操作 1.1 选择 d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2..., 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print (df ['one']) # 选择其中一进行显示,长度为最长列的长度...[1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print(df[2:4]) # 这里选择第 3 到 第 4 行,与 Python...df.append(df2) df = df.drop(0) # 这里有两个行标签为 0,所以直接删除了 2 行 print(df) 运行结果: a b 1 3 4 1 7 8 到此这篇关于Python...Pandas/行进行选择,增加,删除操作的文章就介绍到这了,更多相关Python Pandas行列选择增加删除内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn

    3.2K10
    领券