首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【春节学AI炒股】深度学习引入信号处理技术,轻松分析股票等各种序列数据

    新智元推荐 作者:齐国君 编辑:克雷格 【新智元导读】把深度学习的最新方法用来做股价预测可不可行?一个探讨路径之一是如何深入把经典的信号处理技术引入到深度学习技术中,用来分析各种序列数据(sequence data),比如股票价格、金融信号等,乃至更为一般的物理、经济、社会等活动的动态信号,抽象出有价值的模式,进而对其进行预测和分析。 傅立叶变换能用来炒股发财? 事实上,几年前就有公司或者基金把深度学习的最新方法用来做股价预测,用来在股市上一搏了。 比如就有国内的研究人员用LSTM这种递归神经网络来

    013

    ICML 2022 | 基于结构化数据的异常检测再思考: 我们究竟需要怎样的图神经网络?

    机器之心专栏 机器之心编辑部 图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。香港科技大学和斯坦福大学的研究者首次从谱域的角度(即图拉普拉斯矩阵的谱分解)分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,他们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通滤波器,能够更好捕获 “右移” 产生的高频异常信息。在四个大规模图异常检测数据集上,BWGNN

    03

    ICML 2022 | 基于结构化数据的异常检测再思考: 我们究竟需要怎样的图神经网络?

    来源:机器之心本文约2700字,建议阅读5分钟本文提出了图异常检测的新工具 ——Beta 小波图神经网络 (BWGNN)。 图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。香港科技大学和斯坦福大学的研究者首次从谱域的角度(即图拉普拉斯矩阵的谱分解)分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,他们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通

    04

    白鹭女掌门张晨樱:打造反脆弱的量化多策略盈利武器

    量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,连续2年被腾讯云+社区评选为“年度最佳作者”。 前言 伴随股票市场的风格切换以及商品市场的极端波动,量化产品会在一定程度出现部分回撤,这也再次提醒我们多资产、多策略配置的重要性。然而,对于管理人来说,想要真正做好多策略并非易事,也远不止将几个策略组合在一起这么简单,在策略研发、人才、IT方面都对管理人提出了更高的要求。

    04

    利用显著-偏置卷积神经网络处理混频时间序列

    显著-偏置卷积神经网络简介 金融时间序列通常通常包含多个维度,不同维度数据的采样频率也不一致。例如螺纹钢研究员通常关心螺纹钢的因素有日频更新的现货螺纹钢价格,周频更新的螺纹钢库存,高炉开工率和线螺采购量,而月频更新的则有商品房销售面积等。如果其中某些可观测因子发生了变化,投资者对未来螺纹钢期货涨跌的预期也应发生变化,但是如何处理这些不同频率的数据是量化模型的一大难题。一种比较简单直接的方法就是降低数据的采样频率,例如把日频数据统一为周频(甚至更低如月频),再基于周频数据进行预测。但这种方法的缺点也很明显,期

    05
    领券