验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。
Hello~各位小伙伴们大家好。现在大家是越来越离不开手机,离不开微信了。每天打开手机的第一或者第二件事就是赶紧打开朋友圈看看有什么好玩的东西。偶尔忍不住了自己也发两条……好了,今天教大家用Python发一个不一样的朋友圈。
在日常的生活中,大家偶尔会看到朋友圈发的照片由一张被切成九张的效果,有时由一张照片被切成九张照片所带来的视觉盛宴是不一样的!
传统的UI自动化框架(UIAutomator、Espresso、appium等),或多或少在这些方法做的不够完美。
视频资料:https://tv.sohu.com/v/dXMvMzM1OTQyMDI2LzExMzQxMDY1MS5zaHRtbA==.html 视频的内容介绍:一张照片,横着切成若干条,并且没有打乱,随后隔条分成了两份,然后把这两份各自拼接在一起,出现了跟两张原图一模一样的图片,将两张图竖着切成若干条,并且没有打乱,随后隔条分成了四份,出现了四张跟原图一模一样的图片(等比例缩小)
来源: j_hao104 my.oschina.net/jhao104/blog/647326 一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。计算机涉及到的几何图形处理一般有 2维到n维图形处理,边界区分,面积计算,体积计算,扭曲变形校正。
一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。计算机涉及到的几何图形处理一般有 2维到n维图形处理,边界区分,面积计算,体积计算,扭曲变形校正。对于颜色则有色彩空间的计算与转换,图形上色,阴影,色差处理等等。 在破解验证码中需要用到的知识
二值图像分析最基础的也是最重要的方法之一就是连通域标记,它是所有二值图像分析的基础。它通过对二值图像中目标像素的标记,让每个单独的连通区域形成一个被标识的块,进一步的我们就可以获取这些块的轮廓、外接矩形、质心、不变矩等几何参数。
本文仅为个人学习使用,使用python中的opencv库进行图像模板匹配,如有不对,还望指正
本文介绍基于Python中的ArcPy模块,基于一个大文件夹,遍历其中每一个子文件夹中所有的遥感影像栅格文件,并将原本的每一景遥感影像文件四等分切割,或裁剪为其他指定个数的小块的方法。
最近的瓜可谓真有意思,南山头铁鹅也默默吞下下了1000瓶老干妈。此时用这张1000张老干妈辣椒酱图片组成的企鹅来表达最适合不过了
开源项目地址:alembics/disco-diffusion (github.com)
(1)图像验证码:这是最简单的一种,也很常见。就比如CSDN登录几次失败之后就会出验证码。
首先介绍术语空间域:指在图像平面本身,对图像每个像素直接进行计算处理。灰度变换也称亮度变换,顾名思义,该处理改变图像的亮度,一般与图像增强操作相关,灰度变换可以改变图像的质量和亮度的对比度。常见的灰度变换函数包括: 线性函数 (图像反转) 对数函数:对数和反对数变换 幂律函数:n次幂和n次开方变换
一、准备工作与代码实例 1、PIL、pytesser、tesseract (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载) 下载后是一个exe,直接双击安装,它会自动安装到C:Python27Libsite-packages中去, (2)pytesser:下载地址:http://code.google.com/p/pytesser/,(CSDN下载) 下载解压后直接放C:Python27Libsite-packages(根据你安装的P
最近在做爬虫的时候发现手动输入验证码算是比较烦了,就网上搜了一下,结果发现真的有现成的,作者:老板丶鱼丸粗面,写的很完整,看一下。所有源码点击阅读原文。
在现代技术的世界中,人工智能(AI)正迅速演化,并对每个技术人的生活产生深远的影响。
又来到了测试网络会议的第九期培训,本期的主讲人皮卡丘,培训的是关于OCR-tesseract 使用,话不多说详情如下:
怎么算呢?趁着高数知识还没忘完,赶紧拿起纸演算起来。大部分人是这么做的。但是如果现在跟你说,可以用 AI 来做,你信吗?
OCR(Optical Character Recognition),译为光学字符识别,是指通过扫描等光学输入方式将各种票据、报刊、书籍、文稿及其它印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。
本文介绍基于Python中ArcPy模块,基于具有多个面要素的要素类,批量分割大量栅格图像的方法。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 一个从 中文自然语言文本 中抽取 关键短语 的工具,只消耗 35M 内存。 1.抽取关键短语 在很多关键词提取任务中,使用tfidf、textrank等方法提取得到的仅仅是若干零碎词汇。 这样的零碎词汇无法真正的表达文章的原本含义,我们并不想要它。 For example: >>> text = '朝鲜确认金正恩出访俄罗斯 将与普京举行会谈...' >>> keywords = ['俄罗斯', '朝鲜', '普京',
大数据文摘作品 编译:Katrine Ren、朝夕、钱天培 验证码这种东西真的是反人类。虽然它在保证账号安全、反作弊以及反广告有着至关重要的作用,但对于普通用户来说,输验证码很多时候实在是让人抓狂。 文摘菌18岁的时候帮朋友刷QQ空间留言就天天和验证码作斗争,前几天传一个视频又创下了连续7次输错验证码的记录。不过好在文摘菌最近发现,用机器学习破解简单验证码已经是妥妥的小事了。 今天,文摘菌就带来了一个15分钟黑掉世界上最受欢迎的验证码插件的小教程。欢迎开启新年第一黑。 先给大家介绍一下今天我们要黑的验证
对于需要根据用户“定制”、“生成”的图片,这样的方式就有了一个上传图片---->后端计算---->返回结果的时间,等待时间也许就比较长了。由此,我尝试着利用 canvas在前端进行图片主题色的提取。
中山大学的一名叫mathAI的硕士学霸小哥在GitHub上开源了一个拍照做题神器火了。
现如今我们每时每刻都在与图像打交道,而图像处理也是我们绕不开的问题,本文将会简述图像处理的基础知识以及对常见的裁剪、画布、水印、平移、旋转、缩放等处理的实现。
对于一个架构师或者任何一个软件工程师而言,绘制架构图都是一个比较值得学习的技能。这就像我们学习的时候整理的一些Xmind那种思维逻辑图一样,不仅可以帮我们看到组件之间的联系和层级,还能够展示出组件的全貌。虽然我们也可以用Visio或者Edraw等专业绘图工具来绘制架构图,但是对于工程师而言,用代码来直接绘制架构图,会显得更加的优雅。这里我们介绍的diagrams,就是一个可以用来绘制架构图的python包。
Vtk,(visualization toolkit)是一个开源的免费软件系统,主要用于三维计算机图形学、图像处理和可视化。Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk。以下介绍VTK对于STL图像的基本操作
这个空间就相当于生成渲染模型的轮廓线,比如三维图像大小为(256x256x200),那么这个控件就会生成一个长宽高分别为256想x256x200的一个长方体框架
让我们不妨先来盘点下从 2016 年起过去三年间 Google I/O 开发者大会亮相的重磅 AI 产品:
本文介绍了一个基于Python使用SVM识别简单的字符验证码的完整代码,包括数据集、原理、代码环境、数据解释和方案思路。通过这个案例,可以学习到如何利用机器学习技术解决验证码识别问题。
AI 科技评论按:是否为了简单的抠图功能,还在苦苦修炼 Photoshop 大法?即使修炼成功了,是否觉得在抠图这件事情上花费的时间依然太多?如今一个名叫 remove.bg 的工具可以免除你的这种烦恼,只要上传照片后点击确认,5 秒钟后即可获得一张透明无背景的主体照,而且在使用上完全免费。
之前一直只用Qt做图片显示,这次突发奇想想用Qt做做图像相关的,就尝试了一下图片切割,保存。
项目简介:本实验通过一个简单的例子来实现破解验证码,非常适合Python新手练手。从中我们可以学习到 Python 基本知识,PIL 模块的使用,破解验证码的原理。 本项目完整教程及在线练习地址:Python 破解验证码 (Python学习路径中的基础练手项目) 一、实验说明 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二、实验内容 安装 pillow(PIL)库: $ sudo apt-get update $ sudo apt-g
在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:
论文的故事还在继续 相对于 CVPR 2017收录的共783篇论文,即便雷锋网(公众号:雷锋网) AI 科技评论近期挑选报道的获奖论文、业界大公司论文等等是具有一定特色和代表性的,也仍然只是沧海一粟,其余的收录论文中仍有很大的价值等待我们去挖掘,生物医学图像、3D视觉、运动追踪、场景理解、视频分析等方面都有许多新颖的研究成果。 所以我们继续邀请了宜远智能的刘凯博士对生物医学图像方面的多篇论文进行解读,延续之前最佳论文直播讲解活动,此次是第2篇。 刘凯博士是宜远智能的总裁兼联合创始人,有着香港浸会大学的博
不过第三种ai技术我们可能绝大部分测试者暂时接触不到,第一个验证码识别我们接触的也不多。
大数据文摘作品 编译:Katrine Ren、朝夕、钱天培 验证码这种东西真的是反人类。虽然它在保证账号安全、反作弊以及反广告有着至关重要的作用,但对于普通用户来说,输验证码很多时候实在是让人抓狂。 文摘菌18岁的时候帮朋友刷QQ空间留言就天天和验证码作斗争,前几天传一个视频又创下了连续7次输错验证码的记录。不过好在文摘菌最近发现,用机器学习破解简单验证码已经是妥妥的小事了。 今天,文摘菌就带来了一个15分钟黑掉世界上最受欢迎的验证码插件的小教程。欢迎开启新年第一黑。 先给大家介绍一下今天我们要黑的验证码
声明:本文均在pycharm上进行编辑操作,并本文所写代码均是python3进行编写,如果不能正常运行本文内的代码,请自己调试环境
图像分割技术是计算机视觉领域的一个重要研究方向,也是图像语义理解的重要组成部分。图像分割是指将图像分割为具有相似属性的几个区域的过程。从数学的角度来看,图像分割是将图像分割成不相交区域的过程。该区域可以是图像的前景和背景,也可以是单个对象。可以使用颜色、边缘或邻域的相似性等要素构造这些区域。
所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只剩下需要识别的文字,让图片变成2进制点阵最好。
是不是好奇,下面的影视片段如何能浓缩成一张GIF图?是否好奇,神奇的自媒体大神怎么能轻易把影视频截图成一段段按自己所需的截图?本文,隆重推出Python视频制作利器,MoviePy。
这个Transforms是常见的图像的转换(包含图像增强等), 然后不同的transforms可以通过Compose函数连接起来(类似于Sequence把网络层连接起来一样的感觉)。后面的是关于图像分割任务了的介绍,因为入门PyTorch主要是图像分类,所以后面先不提了。
使用 pydicom.dcmread() 函数进行单张影像的读取,返回一个pydicom.dataset.FileDataset对象.
正好,我也是这沙雕网友大军中的一员,通过各种渠道收集了一些杰尼龟的表情包。但,我想要更多,只有拥有沙雕表情包最多的人才能在斗图中立于不败之地,于是便有了用Python获取可能是全网最全的杰尼龟表情包这一系列。本系列旨在获取更多更多的杰尼龟表情包,传递更多欢乐。
领取专属 10元无门槛券
手把手带您无忧上云