为什么有人会说 Python 多线程是鸡肋?知乎上有人提出这样一个问题,在我们常识中,多进程、多线程都是通过并发的方式充分利用硬件资源提高程序的运行效率,怎么在 Python 中反而成了鸡肋?
在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。
为什么有人会说 Python 多线程是鸡肋?知乎上有人提出这样一个问题,在我们常识中,多进程、多线程都是通过并发的方式充分利用硬件资源提高程序的运行效率,怎么在 Python 中反而成了鸡肋? 有同学可能知道答案,因为 Python 中臭名昭著的 GIL。 那么 GIL 是什么?为什么会有 GIL?多线程真的是鸡肋吗? GIL 可以去掉吗?带着这些问题,我们一起往下看,同时需要你有一点点耐心。 多线程是不是鸡肋,我们先做个实验,实验非常简单,就是将数字 “1亿” 递减,减到 0 程序就终止,这个任务如果我们
总共用时 28 秒,如果开启两条线程来执行上面的操作(假设处理器为多核 CPU),如下所示:
说起Python的多线程,很多人都嗤之以鼻,说Python的多线程是假的多线程,没有用,或者说不好用,那本次就和大家一起来分享一下Python的多线程,看看是不是这样的。
我们知道,在 CPython 中,有一个全局解释器锁,英文叫 global interpreter lock,简称 GIL,是一个互斥锁,用来保护 Python 世界里的对象,防止同一时刻多个线程执行 Python 的字节码,从而确保线程安全,这导致了 Python 的线程无法利用多核 CPU 的优势,因此有人说 Python 的多线程是伪多线程,性能不高,那么 Python 将来有可能去除 GIL 吗?
转一篇关于Python GIL的文章。 归纳一下,CPU的大规模电路设计基本已经到了物理意义的尽头,所有厂商们都开始转向多核以进一步提高性能。Python为了能利用多核多线程的的优势,但又要保证线程之间数据完整性和状态同步,就采用了最简单的加锁的方式(所以说Python的GIL是设计之初一时偷懒造成的!)。Python库的开发者们接受了这个设定,即默认Python是thread-safe,所以开始大量依赖这个特性,无需在实现时考虑额外的内存锁和同步操作。但是GIL的设计有时会显得笨拙低效,但是此时由于内
在网络爬虫的开发过程中,性能优化是一个重要的考虑因素。本文将概述单线程和多进程在Python网络爬虫中的应用,并对比它们的效率。
做 Python 开发时,想必你肯定听过 GIL,它经常被 Python 程序员吐槽,说 Python 的多线程非常鸡肋,因为 GIL 的存在,Python 无法利用多线程提高性能。
Redis,一个以超高的性能和强大的数据结构功能著称的内存数据库,在处理各种复杂数据操作时,速度却能达到惊人的水平。那么,Redis为什么能如此之快呢?今天,我们就来深入解析一下Redis的线程模型,揭开这个问题的神秘面纱。
# 使用多线程方式运行连续加法,对比单线程运行连续加法时间,证明多线程对计算密集型没有太好的效果(python没有真正的多线程) """ 1、由于python的GIL机制,导致python并没有真正的多线程,所以对于计算密集型模型,多线程的效率甚至有可能会低于单线程(因为会有线程切换) 2、python2多线程确实会比单线程慢,python3经过优化后多线程略高于单线程 """ import threading import time def add(n): num = 0 for i
前段时间学习了多线程,但在实际的情况中对于多线程的速度实在不满意,所以今天就来学学多进程分布式爬虫,在这里感谢莫烦的Python教程。
似乎有人不知道nodejs是支持多核的?v0.10 Cluster可以搭建nodejs多核服务。v0.12重写了Cluster,据说提升了非常大的性能。
相同的代码,为何有时候多线程会比单线程慢,有时又会比单线程快? 这主要跟运行的代码有关: 1、 CPU密集型代码 (各种循环处理、计数等等 ),在这种情况下,由于计算工作多, ticks计数很快就会达到 100阈值,然后触发 GIL的释放与再竞争 (多个线程来回切换当然是需要消耗资源的),所以 python下的多线程遇到 CPU密集型代码时,单线程比多线程效率高。 IO密集型代码 (文件处理、网络爬虫等 ),多线程能够有效提升效率 (单线程下有 IO操作会进行 IO等待,造成不必要的时间浪费,而开启多线程能在 线程 A等待时,自动切换到线程 B,可以不浪费 CPU的资源,从而能提升程序执行效率 )。
不过,Julia自2009年出现以来,凭借其速度、性能、易用性及语言的互操性等优势,已然掀起一股全新的浪潮。
Redis是一个高性能的键值存储系统,广泛用于缓存、队列、计数器等场景。在Redis 6.0版本中引入了多线程模型,这一改进在提高性能方面取得了显著的优势。本篇博客将详细探讨Redis 6.0多线程模型相对于单线程模型的优化之处,以及如何使用多线程Redis来提升应用程序性能。
单线程爬虫每次只能访问一个页面,不能充分利用计算机的网络带宽。一个页面最多也就几百KB,所以在爬取一个页面的时候,多出来的网速和从发起请求到源代码中间的时间被白白浪费。
Thrift是一个轻量级、跨语言的RPC框架,主要用于各个服务之间的RPC通信,它通过自身的IDL中间语言, 并借助代码生成引擎生成各种主流语言的RPC服务端/客户端模板代码。Thrift支持多种不同的编程语言,包括C++, Java, Python, PHP等。
前段时间有同事问了一个问题:JavaScript是单线程运行代码,那么如下代码片段中,同样是执行func1和func2,为什么只用 Promise.all 相比于直接执行 await func1();await func2(); 速度更快:
首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环。 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时
Redis,全名REmote DIctionary Server,开源的高性能的KV内存数据库,支持数据持久化。 开源的支持多种数据结构的基于键值的存储服务系统,高性能、功能丰富。
深夜闲来无事,默默的打开github,在搜索框中填入了”Stars:>1”,本想着依旧可以在第一页看到Spark的身影,结果第一个映入眼帘的是这个: 快速浏览完第一页(Top10),10个项目里面7
在以前的文章中虽然我们没有介绍过线程这个概念,但是实际上前面所有代码都是线程,只不过是单线程,代码由上而下依次执行或者进入main函数执行,这样的单线程也称为主线程。
快速浏览完第一页(Top10),10个项目里面7个JS或者具体来说是Node.js的项目!Github历来代表技术圈发展的风向,那么这个在Github比Spark更受追捧的Node.js,到底厉害在哪
GIL(global interpreter lock)是Python一个非常让人蛋疼的问题,它的存在直接影响了对Python并发线程的性能调优。 这里我搬一个测试出来看看运行时间
程序提速这个问题其实解决方案就摆在那里,要么通过并发来提高单位时间内处理的工作量,要么从程序本身去找提效点,比如爬取的数据用gzip传输、提高处理数据的速度等。
协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。
Python 中有一把著名的锁——全局解释器锁(Global Interpreter Lock,简写 GIL),它的作用是防止多个本地线程同时执行 Python 字节码,这会导致 Python 无法实现真正的多线程执行。(注:本文中 Python 解释器特指 CPython)
然而,我要告诉你的是,这句话前半句是对的,后半句是 错的。Python 的多线程确实本质上是单线程。但你依然需要考虑线程并发冲突。
最近公司 Python 后端项目进行重构,整个后端逻辑基本都变更为采用"异步"协程的方式实现。看着满屏幕经过 async await(协程在 Python 中的实现)修饰的代码,我顿时感到一脸懵逼,不知所措。
前两日帮同学解决的问题中涉及到python的线程、协程概念及其调度过程,加上之前总听说同学们去面试的时候会被问到python的多线程问题。所以想写一篇总结。本篇文章假定读者已经有一些操作系统知识的基础,并且几乎不涉及到具体编程,主要研究总结python独特的线程切换调度问题,以及最近用的越来越多的协程的概念和协程切换调度问题。
本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NMyHNqj4-1591867681155)(https://raw.githubusercontent.com/Coxhuang/yosoro/master/20190507225848-image.png)]
最近公司Python 后端项目进行重构,整个后端逻辑基本都变更为采用"异步"协程的方式实现。看着满屏幕经过 async await(协程在 Python 中的实现)修饰的代码,我顿时感到一脸懵逼,不知所措。
GIL(global interpreter lock),全局解释器锁,是很多编程语言实现中都具有的特性,由于它的存在,解释器无法实现真正的并发。它也是 Python 中经常讨论的话题之一。
0 0.08855079666960641 1 0.9249561135155114 2 0.847403937717389 3 0.9581127578680636 4 0.3559537092834082
threading是python标准库中的模块,有些朋友查到会有thread这个模块,但是在python3里面只剩下threading这个模块了,因为threading模块用起来更简单也更安全一些
Redis 单线程主要是指 Redis 的网络 I/O 和事件处理采用了单线程模型,而不是 Redis 本身的命令处理采用单线程模型。
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
根据官方基准测试,在具有平均硬件的Linux机器上运行的单个Redis实例通常可以为简单命令(O(N)或O(log(N)))实现8w+的QPS,使用流水线批处理可以达到100w。
协程:是单线程下的并发,又称微线程,纤程。协程是一种用户态的轻量级线程,即线程是由用户程序自己控制调度的。
多路-指的是多个socket连接,复用-指的是复用一个线程。多路复用主要有三种技术:select,poll,epoll。epoll是最新的也是目前最好的多路复用技术。
Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快;
上篇文章《Python从0到1:threading多线程编程》提及一个名词全局解释器锁GIL,很多Python爱好者私信给我说不理解它的原理,今天就对GIL单独分享一下。 先看官方给出的解释:In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necess
简而言之,因为CPython的内存管理不是线程安全的,所以需要加一个全局解释锁来保障Python内部对象是线程安全的。
领取专属 10元无门槛券
手把手带您无忧上云