首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    目前为止,我们只是使用了TensorFlow的高级API —— tf.keras,它的功能很强大:搭建了各种神经网络架构,包括回归、分类网络、Wide & Deep 网络、自归一化网络,使用了各种方法,包括批归一化、dropout和学习率调度。事实上,你在实际案例中95%碰到的情况只需要tf.keras就足够了(和tf.data,见第13章)。现在来深入学习TensorFlow的低级Python API。当你需要实现自定义损失函数、自定义标准、层、模型、初始化器、正则器、权重约束时,就需要低级API了。甚至有时需要全面控制训练过程,例如使用特殊变换或对约束梯度时。这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。

    03

    大白话5分钟带你走进人工智能-第36节神经网络之tensorflow的前世今生和DAG原理图解(4)

    Tensorflow由Google Brain谷歌大脑开源出来的,在2015年11月在GitHub上开源,2016年是正式版,2017年出了1.0版本,趋于稳定。谷歌希望让优秀的工具得到更多的去使用,所以它开源了,从整体上提高深度学习的效率。在Tensorflow没有出来之前,有很多做深度学习的框架,比如caffe,CNTK,Theano,公司里更多的用Tensorflow。caffe在图像识别领域也会用。Theano用的很少,Tensorflow就是基于Theano。中国的百度深度学习PaddlePaddle也比较好,因为微软、谷歌、百度它们都有一个搜索引擎,每天用户访问量非常大,可以拿到用户海量的数据,就可以来训练更多的模型。

    03
    领券