numpy可以说是Python运用于人工智能和科学计算的一个重要基础,近段时间恰好学习了numpy,pandas,sklearn等一些Python机器学习和科学计算库,因此在此总结一下常用的用法。
今天是读《python算法教程》的第2天,读书笔记内容为用python实现图和树的基本数据结构。 图 图的基本数据结构有两种,分别为邻接列表和邻接矩阵。 现根据下图通过python实现邻接列表和邻接
我们读一篇文章时,很容易感受到作者的情绪,作者是悲伤的,笔下的文字可能字字泣血,作者是快乐的,笔下的文字也会跳舞。
在数据可视化领域,另一个不得不提的一个工具就是Matplotlib。其实我对python一直以来有一种若即若离的感觉,蒹葭苍苍的,有时候觉得可以通过机器学习好好学学python,有时候觉得可以通过搭建博客好好学学python,有时候觉得可以通过单细胞的scanpy和pyscenic好好学学python,有时候又觉得可以通过可视化好好学学python。
这意味着当我们在一个矩阵中表示用户(行)和行为(列)时,结果是一个由许多零值组成的极其稀疏的矩阵。
首先我们来看数组重塑,所谓的重塑本质上就是改变数组的shape。在保证数组当中所有元素不变的前提下,变更数组形状的操作。比如常用的操作主要有两个,一个是转置,另外一个是reshape。
参考[1] 。Lena Söderberg 是瑞典模特,最初出现在《花花公子》1972年11月期的杂志中,原图是一张裸体图片(这并不是重点!!!)。其实还有一些原因[2]:
numpy.argmin表示最小值在数组中所在的位置 a = [[1, 4, 2], [3, 4, 5]] b = np.argmin(a) 结果:0 a = [[4, 4, 2], [3, 4, 5]] b = np.argmin(a) 结果:2 #若有重复只显示第一个最小值的位置 a = [[0, 0, 2], [3, 4, 5]] b = np.argmin(a) 结果
受访者:陈天奇 采访者:何通 编辑:王小宁 简介:陈天奇,华盛顿大学计算机系博士生,研究方向为大规模机器学习。他曾获得KDD CUP 2012 Track 1第一名,并开发了SVDFeature,XGBoost,cxxnet等著名机器学习工具,是Distributed (Deep) Machine Learning Common的发起人之一。 何:你的本科在上海交大的ACM班就读,是怎么开始做机器学习研究的呢? 陈:我们当时的培养计划里面有一项,就是希望我们尽早地接触学术研究。于是我们在大二
Numpy:是Numerical Python的简称,它是目前Python数值计算中最为基础的工具包,Numpy是用于数值科学计算的基础模块,不但能够完成科学计算的任而且能够用作高效的多维数据容器,可用于存储和处理大型矩阵。Numpy的数据容器能够保存任意类型的数据,这使得Numpy可以无缝并快速地整合各种数据。Numpy本身并没有提供很多高效的数据分析功能。理解Numpy数组即数组计算有利于更加高效地使用其他如pandas等数据分析工具。
官方文档地址:https://tensorflow.google.cn/api_guides/python/sparse_ops
转载链接:https://www.zhihu.com/question/51325408/answer/125426642 来源:知乎
树莓派的应用一般保存的文件都是jpg的,但是这种文件是有损的,有时候我们想要RAW文件来进行更加个性化的处理。
前者是引入numpy包中的所有类,后续代码中可以直接使用类的方法。后者是引入numpy包,如果需要使用同名类的方法,需要加类名。 Eg:
提到二维码,想必大家每天都会接触到,扫码支付、扫码添加微信好友等都会用到。关于二维码的生成原理,网上确实有些介绍,但基本涉及到具体编码就一笔带过没有深入了。目前 Python 也有现成的模块可以调用来生成、解析二维码。但我想既然研究的话,还是搞个系列把它琢磨得明明白白比较好。经过一番搜索比较,准备了一系列的素材翻译文章,等到理通整个编码流程,我们再来玩转二维码~
小编的电脑系统是Windows10家庭版,64位。网上找了N种方法都写得特别复杂也不行,以下是我试过可行得法子。
阅读完前两篇文章后,相信读者应该能够将一些简单的CPU代码修改成GPU并行代码,但是对计算密集型任务,仅仅使用前文的方法还是远远不够的,GPU的并行计算能力未能充分利用。本文将主要介绍一些常用性能优化的进阶技术,这部分对编程技能和硬件知识都有更高的要求,建议读者先阅读本系列的前两篇文章,甚至阅读英伟达官方的编程手册,熟悉CUDA编程的底层知识。当然,将这些优化技巧应用之后,程序将获得更大的加速比,这对于需要跑数小时甚至数天的程序来说,收益非常之大。
前几天在Python最强王者交流群【WYM】问了一个Pandas处理的问题,提问截图如下:
项目负责人Philippe Tillet表示:「我们的目标是让Triton成为深度学习中CUDA的替代品」。
大数据文摘作品,转载要求见文末 原作者 | Daniel Jeffries 编译 | Molly 寒小阳 “ 自学AI的过程中,我们非常需要理解这些数学符号。它可以让你用一种非常简洁的方式来表达一个复杂的想法。 ” 你是否跟我一样,自幼恨透数学。 现在,我终于发现了我对数学绝缘的最主要原因:我的老师从来不去回答最重要的问题:我为什么要学数学?学数学有什么用? 他们只是在黑板上写下一大堆方程,并让我记下来。 现在,如果你对AI这个激动人心的领域感兴趣,那么它将是回答这个问题最好的答案!那就是,我想要写一个
执行此步骤是为了修复条形码(barcode,细胞的标识)中偶尔出现的测序错误,从而使片段与原始条形码相关联,从而提高数据质量。16bp条形码序列是从“I2”索引读取得到的。每个条形码序列都根据正确的条形码序列的“白名单”进行检查,并计算每个白名单条形码的频率。我们试图纠正不在白名单上的条形码,方法是找出所有白名单上的条形码,它们与观察到的序列之间的2个差异(汉明距离(Hamming distance)<= 2),并根据reads数据中条形码的丰度和不正确碱基的质量值对它们进行评分。如果在此模型中,未出现在白名单中的观察到的条形码有90%的概率是真实的条形码,则将其更正为白名单条形码。
GPU的内存结构如图所示:GPU的计算核心都在Streaming Multiprocessor(SM)上,SM里有计算核心可直接访问的寄存器(Register)和共享内存(Shared Memory);多个SM可以读取显卡上的显存,包括全局内存(Global Memory)。
你听说过著名的果酱实验吗?在 2000 年,来自哥伦比亚大学和斯坦福大学的心理学家 Sheena Iyengar 和 Mark Lepper 基于现场实验提出了一项研究。
摘要:本文由DMLC的作者之一陈天奇所写,从语言选择,设计理念等开发者的角度来介绍DMLC,同时也是作者近期的分布式机器学习实践的一个总结。 最近对于DMLC的宣传比较多。大部分宣传基本上都是从用户角度出发来做。今天想写一些东西,以我个人的观点来解释一下DMLC对于机器学习系统研究开发者意味着什么。 DMLC的起因 某一天我在和李沐闲聊的时候感叹目前c++的hacker各做各的。当时我们都在做分布式机器学习项目,中间涉及到的分布式数据读入,进程管理等都问题,于是我们似乎在两份目的相同的代码。我提
Sentieon开发的Hap-eval准确率评估工具在设计之初就考虑到了复杂以及重复的基因组区域,采用了基于单倍型拼接序列的矩阵比较模式,兼容包括PacBio和ONT在内的主流三代长读长测序数据。另外值得一提的是,Hap-eval基于python所写,运行效率非常高,速度快,非常适用于大规模分析场景。
2048 是我读大学的时候火起来的一门游戏,没有玩过的童鞋可以亲自体验一下:http://gabrielecirulli.github.io/2048/ 前一段时间又出来了个 博士版,嗯,玩起来很有
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
绝大部分的技术原理介绍会从 单细胞悬浮液制备到测序细节面面俱到,其实并不那么的初学者友好。给大家推荐了一个高度精炼的综述,这个综述于2020年9月发表在 《Experimental & Molecular Medicine》杂志,标题是:《Single-cell sequencing techniques from individual to multiomics analyses》,链接是:https://www.nature.com/articles/s12276-020-00499-2
所谓万丈高楼平地起,搞数据科学、机器学习或深度学习,一开始至少得学会跟计算机打交道吧,怎么跟计算机打交道呢?编程。
导读:相关性分析是指对多个具备相关关系的变量进行分析,从而衡量变量间的相关程度或密切程度。相关性可以应用到所有数据的分析过程中,任何事物之间都是存在一定的联系。相关性用R(相关系数)表示,R的取值范围是[-1, 1]。
BWA-MEM是李恒大神于2010在bioinformatics发布的一款比对软件
#####################################################
大数据文摘作品,转载要求见文末 编译 | 沈爱群,徐凌霄,Aileen 在学习深度学习的课程时,数学知识十分重要,而如果要挑选其中最相关的部分,“线性代数”首当其冲。 如果你也跟本文作者一样,正在探索深度学习又困于相关数学概念,那么一定要读下去,这是一篇介绍深度学习中最常用线性代数操作的新手指南。 什么是线性代数在深度学习中,线性代数是一个非常有用的数学工具,提供同时操作多组数值的方法。它提供多种可以放置数据的结构,如向量(vectors)和矩阵(matrices, 即spreadsheets)两种结构,并
leetcode explore 初级算法数组章节已经全部写完,今天我们来总结下对于数组类一些简单题目的解题方式
大家好,又见面了,我是你们的朋友全栈君。 stop_words:设置停用词表,这样的词我们就不会统计出来(多半是虚拟词,冠词等等),需要列表结构,所以代码中定义了一个函数来处理停用词表…前言前文给
作者:ANKIT CHOUDHARY 翻译:张媛 术语校对:冯羽 文字校对:谭佳瑶 本文共3933字,建议阅读9分钟。 本文带大家了解因子分解机算法并解析其优势所在,教你在python中实现。 介绍 我仍然记得第一次遇到点击率预测问题时的情形,在那之前,我一直在学习数据科学,对自己取得的进展很满意,在机器学习黑客马拉松活动中也开始建立了自信,并决定好好迎接不同的挑战。 为了做得更好,我购买了一台内存16GB,i7处理器的机器,但是当我看到数据集的时候却感到非常不安,解压缩之后的数据大概有50GB - 我
“ 看过大神冰不语的文章《圣诞节,用Python给自己加顶“圣诞帽”》,文章很棒,但是对于刚入门的我来说,讲解的不够太细,这里做了详细的分析,也分享给大家”
作者是一名在读的大二学生,在我看来,是一个非常励志的小伙子,虽然他总觉得自己并不是读的名校,有点小小的不自信,但我相信这么早就意识到学习重要性的小伙子未来可期。
有很多小伙伴问过我这样的问题,有没有必要把机器学习算法自己实现一遍。那么今天的答案来了。往下看,自己领会,还有2个资源。
选自semianalysis.com 作者:Dylan Patel 机器之心编译 机器之心编辑部 CUDA 闭源库将和 TensorFlow 一样逐渐式微。 十年来,机器学习软件开发的格局发生了重大变化。许多框架如雨后春笋般涌现,但大多数都严重依赖于英伟达的 CUDA,并在英伟达的 GPU 上才能获得最佳的性能。然而,随着 PyTorch 2.0 和 OpenAI Triton 的到来,英伟达在这一领域的主导地位正在被打破。 谷歌早期在机器学习模型架构、训练、模型优化方面都具有很大优势,但现在却难以充分发挥
作者:何之源 首发于知乎专栏:AI Insight 量子位 已获授权编辑发布 转载请联系原作者 Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。 此前,在TensorFlow中读取数据一般有两种方法: 使用placeholder读内存中的数据 使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解tensorflow数据读取机制) 文章地址: https://zhuanlan.zhihu.com/p/2
高阶部分篇篇都是干货,建议大家不要错过任何一节内容,最好关注我,方便看到每次的文章推送。
im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 这句报错
【输入形式】 一行,供24个整数。以先行后列顺序输入第一个矩阵,而后输入第二个矩阵。
在本教程中,我们将介绍传感器协方差计算的基础知识,并构建一个噪声协方差矩阵,该矩阵可用于计算最小范数逆解.
访问控制技术是信息安全的核心组成部分,主要目的是保护系统资源不被未授权的访问所危害。它确保只有被授权的用户(或系统)才能访问或修改资源。下面是关于访问控制的核心概念解析:
写完今天这一篇,Python小知识这块就完了,一共四篇,也就是我过了一遍《零压力学Python》后记录下来的一些重要的点,希望对初学者或者复习Python基础的读者有所帮助,再多的话我就不说了,一切都在知识里面,加油。
对比测试 scipy.misc 和 PIL.Image 和 libtiff.TIFF 三个库
领取专属 10元无门槛券
手把手带您无忧上云