首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python的全局解释器锁(GIL)GIL是什么为什么会有GILGIL的影响顺序执行的单线程(single_thread.py)同时执行的两个并发线程(multi_thread.py)当前GIL设计的

    转一篇关于Python GIL的文章。 归纳一下,CPU的大规模电路设计基本已经到了物理意义的尽头,所有厂商们都开始转向多核以进一步提高性能。Python为了能利用多核多线程的的优势,但又要保证线程之间数据完整性和状态同步,就采用了最简单的加锁的方式(所以说Python的GIL是设计之初一时偷懒造成的!)。Python库的开发者们接受了这个设定,即默认Python是thread-safe,所以开始大量依赖这个特性,无需在实现时考虑额外的内存锁和同步操作。但是GIL的设计有时会显得笨拙低效,但是此时由于内

    010

    从0到1搭建大数据平台之调度系统

    记得第一次参与大数据平台从无到有的搭建,最开始任务调度就是用的Crontab,分时日月周,各种任务脚本配置在一台主机上。crontab 使用非常方便,配置也很简单。刚开始任务很少,用着还可以,每天起床巡检一下日志。随着任务越来越多,出现了任务不能在原来计划的时间完成,出现了上级任务跑完前,后面依赖的任务已经起来了,这时候没有数据,任务就会报错,或者两个任务并行跑了,出现了错误的结果。排查任务错误原因越来麻烦,各种任务的依赖关系越来越负责,最后排查任务问题就行从一团乱麻中,一根一根梳理出每天麻绳。crontab虽然简单,稳定,但是随着任务的增加和依赖关系越来越复杂,已经完全不能满足我们的需求了,这时候就需要建设自己的调度系统了。

    02

    FATE 2.0:业内首个开源实现异构系统互联互通的开发指南

    题图摄于广深高铁‍‍‍‍ 1 背景介绍 联邦学习为打破“数据孤岛”而生,然而随着越来越多的机构投身到联邦学习领域,不同架构的联邦学习系统之间逐渐形成了新的“孤岛”现象,互联互通显得越发重要。FATE 2.0版本以全面互通为设计理念,是业内首个采用开源方式对应用层、调度、通信、异构计算(算法)等四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。 FATE 2.0互联互通整体架构示意图如下图所示。从上而下,从不同层次定义了东西向和南北向协议接口规范。方便各个厂商根据自身特点,分层和分

    04

    Jupyter在美团民宿的应用实践

    做算法的同学对于Kaggle应该都不陌生,除了举办算法挑战赛以外,它还提供了一个学习、练习数据分析和算法开发的平台。Kaggle提供了Kaggle Kernels,方便用户进行数据分析以及经验分享。在Kaggle Kernels中,你可以Fork别人分享的结果进行复现或者进一步分析,也可以新建一个Kernel进行数据分析和算法开发。Kaggle Kernels还提供了一个配置好的环境,以及比赛的数据集,帮你从配置本地环境中解放出来。Kaggle Kernels提供给你的是一个运行在浏览器中的Jupyter,你可以在上面进行交互式的执行代码、探索数据、训练模型等等。更多关于Kaggle Kernels的使用方法可以参考 Introduction to Kaggle Kernels,这里不再多做阐述。

    02
    领券